Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehen Strom und Magnetismus bei Annäherung an den absoluten Nullpunkt getrennte Wege?

31.07.2003


Magnetismus hat auch heute noch nichts von seiner Faszination eingebüßt. In den letzten zehn Jahren konzentriert sich die Forschung auf das Verhalten von Materialien, deren Übergang in den geordneten magnetischen Zustand möglichst erst am absoluten Nullpunkt, dem so genannten "quantenkritischen Punkt" eintritt, sei es durch chemische Veränderungen oder andere externe Einflüsse. Quanten- statt thermische Fluktuationen bestimmen dann die Physik und die Frage ist, welche unbekannten Phänomene sie hervorrufen.

... mehr zu:
»Annäherung »Nullpunkt »Temperatur

Wissenschaftler des Max-Planck-Instituts für Chemische Physik fester Stoffe in Dresden haben jetzt eine neuartige intermetallische Verbindung YbRh2(Si0.95Ge0.05)2 hergestellt, die bei Annäherung an den quantenkritischen Punkt ein völlig "exotisches Verhalten" zeigt: Die Elektronen bewegen sich immer langsamer, werden also immer schwerer und kollidieren mit immer größerer Wahrscheinlichkeit untereinander. Zugleich nimmt ihre Masse bei Annäherung an den quantenkritischen Punkt kontinuierlich zu, so dass sie am absoluten Nullpunkt unendlich groß sein würde. Dieses Verhalten lässt aus Sicht der Forscher darauf schließen, daß die "Schweren Elektronen" am absoluten Nullpunkt offenbar in zwei Komponenten auseinanderbrechen. Dieses überraschende Ergebnis ist von grundlegender Bedeutung für ein besseres Verständnis heute bekannter Substanzklassen, zu denen auch die Hochtemperatur-Kupratsupraleiter gehören, die ein enormes technologisches Potenzial besitzen.

Die Erforschung des Magnetismus hat in den letzten hundert Jahren immer wieder neue Erkenntnisse und technologische Anwendungen hervorgebracht. So lassen sich einige gewöhnliche Metalle durch Abkühlen in den magnetisch geordneten Zustand überführen. Bei reinem Eisen tritt dieser Phasenübergang beispielsweise schon bei 774 Grad Celsius ein. Seit einigen Jahren sucht man nun weltweit nach metallischen Materialien, bei denen dieser Übergang erst bei extrem tiefen Temperaturen auftritt. Ziel der Forschung ist es, die magnetische Übergangstemperatur durch maßgeschneiderte Substanzen so nahe wie möglich an den absoluten Temperatur-Nullpunkt, also Null Grad Kelvin (T = 0 K, entsprechend -273.15 Grad Celsius) zu verschieben. Hier spielen Temperatureffekte, also thermische Fluktuationen keine Rolle mehr. Die physikalischen Eigenschaften des Materials werden nur noch durch Quantenfluktuationen bestimmt, eine direkte Folge der Heisenbergschen Unschärfe. Deshalb spricht man von einem Quantenphasenübergang. Seit einigen Jahren versucht man diesem neuartigen Phasenübergang durch Variation externer Parameter, wie z. B. chemische Zusammensetzung, Druck oder Magnetfeld, so nahe wie möglich zu kommen. Dazu ist es erforderlich, die externen Parameter so einzustellen, dass das Material an den so genannten "quantenkritischen Punkt" gelangt. Man vermutet, dass dieser das anomale elektrische und magnetische Verhalten vieler Substanzen über weite Temperaturbereiche hinweg bestimmt.


Geeignete Kandidaten für solche Untersuchungen sind Metalle aus der Klasse der "Schwere-Fermionen-Systeme". Das sind Verbindungen, die unter anderem Atome der Elemente Cer oder Ytterbium enthalten, und in denen bei tiefen Temperaturen "Schwere Elektronen" durch die Streuung von (leichten) Leitungselektronen an magnetischen Momenten entstehen. Bereits vor einigen Jahren war es Wissenschaftlern am Dresdner Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) gelungen, eine extrem reine intermetallische Verbindung aus Ytterbium (Yb), Rhodium (Rh) und Silizium (Si) zu synthetisieren. Im YbRh2Si2 tritt Magnetismus erst bei einer Temperatur von T = 0.07 Kelvin auf. Jetzt konnten die Forscher diese Temperatur noch einmal unterbieten, indem sie in diesem Material Silizium geringfügig durch Germanium ersetzten. In dem neuen Material, YbRh2(Si0.95Ge0.05)2 taucht die magnetische Ordnung erst unterhalb von T = 0.02 Kelvin auf.

Bei dieser Substanz haben die Forscher zwei komplementäre Eigenschaften in unmittelbarer Nähe des quantenkritischen Punktes gemessen: die Wärmekapazität, die Aufschluss über die Masse der "Schweren Elektronen" gibt, und den elektrischen Widerstand als Maß für die Häufigkeit der Kollisionen der Leitungselektronen an den "Schweren Elektronen". Dazu bedienten sich die Wissenschaftler eines Tricks: Sie kühlten die Probe bis auf etwa 0.01 Kelvin ab und setzten sie dann einem schwachen Magnetfeld aus. Auf diese Weise gelang es ihnen, den Mechanismus, der die magnetische Ordnung herstellt, bei einem bestimmten Wert des Magnetfeldes auszuschalten und so den Magnetismus zu unterdrücken. Das Material befindet sich bei diesem "kritischen" Wert des Feldes in unmittelbarer Nähe des quantenkritischen Punktes. Beide Messgrößen zeigten hier eine dramatische Entwicklung: Einerseits bewegten sich die Elektronen immer langsamer, wurden also auch immer schwerer, und andererseits kollidierten sie immer häufiger untereinander im völligen Widerspruch zu gängigen theoretischen Voraussagen.

Diese mehrfach überprüften Befunde lassen sich mit bisherigen Theorien nicht mehr vereinbaren. Danach sollte die Existenz der "Schweren Elektronen" am quantenkritischen Punkt nicht berührt sein. Die Forschungsergebnisse zeigen jedoch, dass bei Annäherung an den quantenkritischen Punkt die Quantenfluktuationen zu einer divergierenden (unendlich wachsenden) Masse der "Schweren Elektronen" und einem enormen Anstieg der Rate ihrer gegenseitigen Kollisionen führen. Daraus folgern die Forscher, dass die "Schweren Elektronen" in diesen Materialien am absoluten Nullpunkt nicht mehr existieren können und offenbar in einen magnetischen und einen stromtragenden Anteil auseinanderbrechen.

Aus Sicht der beteiligten Wissenschaftler dreht sich bei diesem überraschenden Forschungsergebnis alles um den Quantenphasenübergang am absoluten Nullpunkt, so Prof. Frank Steglich, Direktor am Max-Planck-Institut für Chemische Physik fester Stoffe: "Es ist jetzt eine Herausforderung für die Theoretiker, das Konzept der Quantenphasenübergänge weiter zu entwickeln. Denn offenbar bestimmt der quantenkritische Punkt Materialeigenschaften wie Magnetismus und Supraleitung nicht nur am absoluten Nullpunkt, sondern abhängig von der Stärke der Quantenfluktuationen auch bei höheren Temperaturen."

Weitere Informationen erhalten Sie von:

Dr. Philipp Gegenwart
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Tel.: +49 (351) 4646 2324
Fax.: +49 (351) 4646 2360
E-Mail:

Dr. Philipp Gegenwart | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/chem_physik_fester_stoffe/index.html

Weitere Berichte zu: Annäherung Nullpunkt Temperatur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung