Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehen Strom und Magnetismus bei Annäherung an den absoluten Nullpunkt getrennte Wege?

31.07.2003


Magnetismus hat auch heute noch nichts von seiner Faszination eingebüßt. In den letzten zehn Jahren konzentriert sich die Forschung auf das Verhalten von Materialien, deren Übergang in den geordneten magnetischen Zustand möglichst erst am absoluten Nullpunkt, dem so genannten "quantenkritischen Punkt" eintritt, sei es durch chemische Veränderungen oder andere externe Einflüsse. Quanten- statt thermische Fluktuationen bestimmen dann die Physik und die Frage ist, welche unbekannten Phänomene sie hervorrufen.

... mehr zu:
»Annäherung »Nullpunkt »Temperatur

Wissenschaftler des Max-Planck-Instituts für Chemische Physik fester Stoffe in Dresden haben jetzt eine neuartige intermetallische Verbindung YbRh2(Si0.95Ge0.05)2 hergestellt, die bei Annäherung an den quantenkritischen Punkt ein völlig "exotisches Verhalten" zeigt: Die Elektronen bewegen sich immer langsamer, werden also immer schwerer und kollidieren mit immer größerer Wahrscheinlichkeit untereinander. Zugleich nimmt ihre Masse bei Annäherung an den quantenkritischen Punkt kontinuierlich zu, so dass sie am absoluten Nullpunkt unendlich groß sein würde. Dieses Verhalten lässt aus Sicht der Forscher darauf schließen, daß die "Schweren Elektronen" am absoluten Nullpunkt offenbar in zwei Komponenten auseinanderbrechen. Dieses überraschende Ergebnis ist von grundlegender Bedeutung für ein besseres Verständnis heute bekannter Substanzklassen, zu denen auch die Hochtemperatur-Kupratsupraleiter gehören, die ein enormes technologisches Potenzial besitzen.

Die Erforschung des Magnetismus hat in den letzten hundert Jahren immer wieder neue Erkenntnisse und technologische Anwendungen hervorgebracht. So lassen sich einige gewöhnliche Metalle durch Abkühlen in den magnetisch geordneten Zustand überführen. Bei reinem Eisen tritt dieser Phasenübergang beispielsweise schon bei 774 Grad Celsius ein. Seit einigen Jahren sucht man nun weltweit nach metallischen Materialien, bei denen dieser Übergang erst bei extrem tiefen Temperaturen auftritt. Ziel der Forschung ist es, die magnetische Übergangstemperatur durch maßgeschneiderte Substanzen so nahe wie möglich an den absoluten Temperatur-Nullpunkt, also Null Grad Kelvin (T = 0 K, entsprechend -273.15 Grad Celsius) zu verschieben. Hier spielen Temperatureffekte, also thermische Fluktuationen keine Rolle mehr. Die physikalischen Eigenschaften des Materials werden nur noch durch Quantenfluktuationen bestimmt, eine direkte Folge der Heisenbergschen Unschärfe. Deshalb spricht man von einem Quantenphasenübergang. Seit einigen Jahren versucht man diesem neuartigen Phasenübergang durch Variation externer Parameter, wie z. B. chemische Zusammensetzung, Druck oder Magnetfeld, so nahe wie möglich zu kommen. Dazu ist es erforderlich, die externen Parameter so einzustellen, dass das Material an den so genannten "quantenkritischen Punkt" gelangt. Man vermutet, dass dieser das anomale elektrische und magnetische Verhalten vieler Substanzen über weite Temperaturbereiche hinweg bestimmt.


Geeignete Kandidaten für solche Untersuchungen sind Metalle aus der Klasse der "Schwere-Fermionen-Systeme". Das sind Verbindungen, die unter anderem Atome der Elemente Cer oder Ytterbium enthalten, und in denen bei tiefen Temperaturen "Schwere Elektronen" durch die Streuung von (leichten) Leitungselektronen an magnetischen Momenten entstehen. Bereits vor einigen Jahren war es Wissenschaftlern am Dresdner Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) gelungen, eine extrem reine intermetallische Verbindung aus Ytterbium (Yb), Rhodium (Rh) und Silizium (Si) zu synthetisieren. Im YbRh2Si2 tritt Magnetismus erst bei einer Temperatur von T = 0.07 Kelvin auf. Jetzt konnten die Forscher diese Temperatur noch einmal unterbieten, indem sie in diesem Material Silizium geringfügig durch Germanium ersetzten. In dem neuen Material, YbRh2(Si0.95Ge0.05)2 taucht die magnetische Ordnung erst unterhalb von T = 0.02 Kelvin auf.

Bei dieser Substanz haben die Forscher zwei komplementäre Eigenschaften in unmittelbarer Nähe des quantenkritischen Punktes gemessen: die Wärmekapazität, die Aufschluss über die Masse der "Schweren Elektronen" gibt, und den elektrischen Widerstand als Maß für die Häufigkeit der Kollisionen der Leitungselektronen an den "Schweren Elektronen". Dazu bedienten sich die Wissenschaftler eines Tricks: Sie kühlten die Probe bis auf etwa 0.01 Kelvin ab und setzten sie dann einem schwachen Magnetfeld aus. Auf diese Weise gelang es ihnen, den Mechanismus, der die magnetische Ordnung herstellt, bei einem bestimmten Wert des Magnetfeldes auszuschalten und so den Magnetismus zu unterdrücken. Das Material befindet sich bei diesem "kritischen" Wert des Feldes in unmittelbarer Nähe des quantenkritischen Punktes. Beide Messgrößen zeigten hier eine dramatische Entwicklung: Einerseits bewegten sich die Elektronen immer langsamer, wurden also auch immer schwerer, und andererseits kollidierten sie immer häufiger untereinander im völligen Widerspruch zu gängigen theoretischen Voraussagen.

Diese mehrfach überprüften Befunde lassen sich mit bisherigen Theorien nicht mehr vereinbaren. Danach sollte die Existenz der "Schweren Elektronen" am quantenkritischen Punkt nicht berührt sein. Die Forschungsergebnisse zeigen jedoch, dass bei Annäherung an den quantenkritischen Punkt die Quantenfluktuationen zu einer divergierenden (unendlich wachsenden) Masse der "Schweren Elektronen" und einem enormen Anstieg der Rate ihrer gegenseitigen Kollisionen führen. Daraus folgern die Forscher, dass die "Schweren Elektronen" in diesen Materialien am absoluten Nullpunkt nicht mehr existieren können und offenbar in einen magnetischen und einen stromtragenden Anteil auseinanderbrechen.

Aus Sicht der beteiligten Wissenschaftler dreht sich bei diesem überraschenden Forschungsergebnis alles um den Quantenphasenübergang am absoluten Nullpunkt, so Prof. Frank Steglich, Direktor am Max-Planck-Institut für Chemische Physik fester Stoffe: "Es ist jetzt eine Herausforderung für die Theoretiker, das Konzept der Quantenphasenübergänge weiter zu entwickeln. Denn offenbar bestimmt der quantenkritische Punkt Materialeigenschaften wie Magnetismus und Supraleitung nicht nur am absoluten Nullpunkt, sondern abhängig von der Stärke der Quantenfluktuationen auch bei höheren Temperaturen."

Weitere Informationen erhalten Sie von:

Dr. Philipp Gegenwart
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Tel.: +49 (351) 4646 2324
Fax.: +49 (351) 4646 2360
E-Mail:

Dr. Philipp Gegenwart | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/chem_physik_fester_stoffe/index.html

Weitere Berichte zu: Annäherung Nullpunkt Temperatur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie