Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehen Strom und Magnetismus bei Annäherung an den absoluten Nullpunkt getrennte Wege?

31.07.2003


Magnetismus hat auch heute noch nichts von seiner Faszination eingebüßt. In den letzten zehn Jahren konzentriert sich die Forschung auf das Verhalten von Materialien, deren Übergang in den geordneten magnetischen Zustand möglichst erst am absoluten Nullpunkt, dem so genannten "quantenkritischen Punkt" eintritt, sei es durch chemische Veränderungen oder andere externe Einflüsse. Quanten- statt thermische Fluktuationen bestimmen dann die Physik und die Frage ist, welche unbekannten Phänomene sie hervorrufen.

... mehr zu:
»Annäherung »Nullpunkt »Temperatur

Wissenschaftler des Max-Planck-Instituts für Chemische Physik fester Stoffe in Dresden haben jetzt eine neuartige intermetallische Verbindung YbRh2(Si0.95Ge0.05)2 hergestellt, die bei Annäherung an den quantenkritischen Punkt ein völlig "exotisches Verhalten" zeigt: Die Elektronen bewegen sich immer langsamer, werden also immer schwerer und kollidieren mit immer größerer Wahrscheinlichkeit untereinander. Zugleich nimmt ihre Masse bei Annäherung an den quantenkritischen Punkt kontinuierlich zu, so dass sie am absoluten Nullpunkt unendlich groß sein würde. Dieses Verhalten lässt aus Sicht der Forscher darauf schließen, daß die "Schweren Elektronen" am absoluten Nullpunkt offenbar in zwei Komponenten auseinanderbrechen. Dieses überraschende Ergebnis ist von grundlegender Bedeutung für ein besseres Verständnis heute bekannter Substanzklassen, zu denen auch die Hochtemperatur-Kupratsupraleiter gehören, die ein enormes technologisches Potenzial besitzen.

Die Erforschung des Magnetismus hat in den letzten hundert Jahren immer wieder neue Erkenntnisse und technologische Anwendungen hervorgebracht. So lassen sich einige gewöhnliche Metalle durch Abkühlen in den magnetisch geordneten Zustand überführen. Bei reinem Eisen tritt dieser Phasenübergang beispielsweise schon bei 774 Grad Celsius ein. Seit einigen Jahren sucht man nun weltweit nach metallischen Materialien, bei denen dieser Übergang erst bei extrem tiefen Temperaturen auftritt. Ziel der Forschung ist es, die magnetische Übergangstemperatur durch maßgeschneiderte Substanzen so nahe wie möglich an den absoluten Temperatur-Nullpunkt, also Null Grad Kelvin (T = 0 K, entsprechend -273.15 Grad Celsius) zu verschieben. Hier spielen Temperatureffekte, also thermische Fluktuationen keine Rolle mehr. Die physikalischen Eigenschaften des Materials werden nur noch durch Quantenfluktuationen bestimmt, eine direkte Folge der Heisenbergschen Unschärfe. Deshalb spricht man von einem Quantenphasenübergang. Seit einigen Jahren versucht man diesem neuartigen Phasenübergang durch Variation externer Parameter, wie z. B. chemische Zusammensetzung, Druck oder Magnetfeld, so nahe wie möglich zu kommen. Dazu ist es erforderlich, die externen Parameter so einzustellen, dass das Material an den so genannten "quantenkritischen Punkt" gelangt. Man vermutet, dass dieser das anomale elektrische und magnetische Verhalten vieler Substanzen über weite Temperaturbereiche hinweg bestimmt.


Geeignete Kandidaten für solche Untersuchungen sind Metalle aus der Klasse der "Schwere-Fermionen-Systeme". Das sind Verbindungen, die unter anderem Atome der Elemente Cer oder Ytterbium enthalten, und in denen bei tiefen Temperaturen "Schwere Elektronen" durch die Streuung von (leichten) Leitungselektronen an magnetischen Momenten entstehen. Bereits vor einigen Jahren war es Wissenschaftlern am Dresdner Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) gelungen, eine extrem reine intermetallische Verbindung aus Ytterbium (Yb), Rhodium (Rh) und Silizium (Si) zu synthetisieren. Im YbRh2Si2 tritt Magnetismus erst bei einer Temperatur von T = 0.07 Kelvin auf. Jetzt konnten die Forscher diese Temperatur noch einmal unterbieten, indem sie in diesem Material Silizium geringfügig durch Germanium ersetzten. In dem neuen Material, YbRh2(Si0.95Ge0.05)2 taucht die magnetische Ordnung erst unterhalb von T = 0.02 Kelvin auf.

Bei dieser Substanz haben die Forscher zwei komplementäre Eigenschaften in unmittelbarer Nähe des quantenkritischen Punktes gemessen: die Wärmekapazität, die Aufschluss über die Masse der "Schweren Elektronen" gibt, und den elektrischen Widerstand als Maß für die Häufigkeit der Kollisionen der Leitungselektronen an den "Schweren Elektronen". Dazu bedienten sich die Wissenschaftler eines Tricks: Sie kühlten die Probe bis auf etwa 0.01 Kelvin ab und setzten sie dann einem schwachen Magnetfeld aus. Auf diese Weise gelang es ihnen, den Mechanismus, der die magnetische Ordnung herstellt, bei einem bestimmten Wert des Magnetfeldes auszuschalten und so den Magnetismus zu unterdrücken. Das Material befindet sich bei diesem "kritischen" Wert des Feldes in unmittelbarer Nähe des quantenkritischen Punktes. Beide Messgrößen zeigten hier eine dramatische Entwicklung: Einerseits bewegten sich die Elektronen immer langsamer, wurden also auch immer schwerer, und andererseits kollidierten sie immer häufiger untereinander im völligen Widerspruch zu gängigen theoretischen Voraussagen.

Diese mehrfach überprüften Befunde lassen sich mit bisherigen Theorien nicht mehr vereinbaren. Danach sollte die Existenz der "Schweren Elektronen" am quantenkritischen Punkt nicht berührt sein. Die Forschungsergebnisse zeigen jedoch, dass bei Annäherung an den quantenkritischen Punkt die Quantenfluktuationen zu einer divergierenden (unendlich wachsenden) Masse der "Schweren Elektronen" und einem enormen Anstieg der Rate ihrer gegenseitigen Kollisionen führen. Daraus folgern die Forscher, dass die "Schweren Elektronen" in diesen Materialien am absoluten Nullpunkt nicht mehr existieren können und offenbar in einen magnetischen und einen stromtragenden Anteil auseinanderbrechen.

Aus Sicht der beteiligten Wissenschaftler dreht sich bei diesem überraschenden Forschungsergebnis alles um den Quantenphasenübergang am absoluten Nullpunkt, so Prof. Frank Steglich, Direktor am Max-Planck-Institut für Chemische Physik fester Stoffe: "Es ist jetzt eine Herausforderung für die Theoretiker, das Konzept der Quantenphasenübergänge weiter zu entwickeln. Denn offenbar bestimmt der quantenkritische Punkt Materialeigenschaften wie Magnetismus und Supraleitung nicht nur am absoluten Nullpunkt, sondern abhängig von der Stärke der Quantenfluktuationen auch bei höheren Temperaturen."

Weitere Informationen erhalten Sie von:

Dr. Philipp Gegenwart
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Tel.: +49 (351) 4646 2324
Fax.: +49 (351) 4646 2360
E-Mail:

Dr. Philipp Gegenwart | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/chem_physik_fester_stoffe/index.html

Weitere Berichte zu: Annäherung Nullpunkt Temperatur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie