Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehen Strom und Magnetismus bei Annäherung an den absoluten Nullpunkt getrennte Wege?

31.07.2003


Magnetismus hat auch heute noch nichts von seiner Faszination eingebüßt. In den letzten zehn Jahren konzentriert sich die Forschung auf das Verhalten von Materialien, deren Übergang in den geordneten magnetischen Zustand möglichst erst am absoluten Nullpunkt, dem so genannten "quantenkritischen Punkt" eintritt, sei es durch chemische Veränderungen oder andere externe Einflüsse. Quanten- statt thermische Fluktuationen bestimmen dann die Physik und die Frage ist, welche unbekannten Phänomene sie hervorrufen.

... mehr zu:
»Annäherung »Nullpunkt »Temperatur

Wissenschaftler des Max-Planck-Instituts für Chemische Physik fester Stoffe in Dresden haben jetzt eine neuartige intermetallische Verbindung YbRh2(Si0.95Ge0.05)2 hergestellt, die bei Annäherung an den quantenkritischen Punkt ein völlig "exotisches Verhalten" zeigt: Die Elektronen bewegen sich immer langsamer, werden also immer schwerer und kollidieren mit immer größerer Wahrscheinlichkeit untereinander. Zugleich nimmt ihre Masse bei Annäherung an den quantenkritischen Punkt kontinuierlich zu, so dass sie am absoluten Nullpunkt unendlich groß sein würde. Dieses Verhalten lässt aus Sicht der Forscher darauf schließen, daß die "Schweren Elektronen" am absoluten Nullpunkt offenbar in zwei Komponenten auseinanderbrechen. Dieses überraschende Ergebnis ist von grundlegender Bedeutung für ein besseres Verständnis heute bekannter Substanzklassen, zu denen auch die Hochtemperatur-Kupratsupraleiter gehören, die ein enormes technologisches Potenzial besitzen.

Die Erforschung des Magnetismus hat in den letzten hundert Jahren immer wieder neue Erkenntnisse und technologische Anwendungen hervorgebracht. So lassen sich einige gewöhnliche Metalle durch Abkühlen in den magnetisch geordneten Zustand überführen. Bei reinem Eisen tritt dieser Phasenübergang beispielsweise schon bei 774 Grad Celsius ein. Seit einigen Jahren sucht man nun weltweit nach metallischen Materialien, bei denen dieser Übergang erst bei extrem tiefen Temperaturen auftritt. Ziel der Forschung ist es, die magnetische Übergangstemperatur durch maßgeschneiderte Substanzen so nahe wie möglich an den absoluten Temperatur-Nullpunkt, also Null Grad Kelvin (T = 0 K, entsprechend -273.15 Grad Celsius) zu verschieben. Hier spielen Temperatureffekte, also thermische Fluktuationen keine Rolle mehr. Die physikalischen Eigenschaften des Materials werden nur noch durch Quantenfluktuationen bestimmt, eine direkte Folge der Heisenbergschen Unschärfe. Deshalb spricht man von einem Quantenphasenübergang. Seit einigen Jahren versucht man diesem neuartigen Phasenübergang durch Variation externer Parameter, wie z. B. chemische Zusammensetzung, Druck oder Magnetfeld, so nahe wie möglich zu kommen. Dazu ist es erforderlich, die externen Parameter so einzustellen, dass das Material an den so genannten "quantenkritischen Punkt" gelangt. Man vermutet, dass dieser das anomale elektrische und magnetische Verhalten vieler Substanzen über weite Temperaturbereiche hinweg bestimmt.


Geeignete Kandidaten für solche Untersuchungen sind Metalle aus der Klasse der "Schwere-Fermionen-Systeme". Das sind Verbindungen, die unter anderem Atome der Elemente Cer oder Ytterbium enthalten, und in denen bei tiefen Temperaturen "Schwere Elektronen" durch die Streuung von (leichten) Leitungselektronen an magnetischen Momenten entstehen. Bereits vor einigen Jahren war es Wissenschaftlern am Dresdner Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) gelungen, eine extrem reine intermetallische Verbindung aus Ytterbium (Yb), Rhodium (Rh) und Silizium (Si) zu synthetisieren. Im YbRh2Si2 tritt Magnetismus erst bei einer Temperatur von T = 0.07 Kelvin auf. Jetzt konnten die Forscher diese Temperatur noch einmal unterbieten, indem sie in diesem Material Silizium geringfügig durch Germanium ersetzten. In dem neuen Material, YbRh2(Si0.95Ge0.05)2 taucht die magnetische Ordnung erst unterhalb von T = 0.02 Kelvin auf.

Bei dieser Substanz haben die Forscher zwei komplementäre Eigenschaften in unmittelbarer Nähe des quantenkritischen Punktes gemessen: die Wärmekapazität, die Aufschluss über die Masse der "Schweren Elektronen" gibt, und den elektrischen Widerstand als Maß für die Häufigkeit der Kollisionen der Leitungselektronen an den "Schweren Elektronen". Dazu bedienten sich die Wissenschaftler eines Tricks: Sie kühlten die Probe bis auf etwa 0.01 Kelvin ab und setzten sie dann einem schwachen Magnetfeld aus. Auf diese Weise gelang es ihnen, den Mechanismus, der die magnetische Ordnung herstellt, bei einem bestimmten Wert des Magnetfeldes auszuschalten und so den Magnetismus zu unterdrücken. Das Material befindet sich bei diesem "kritischen" Wert des Feldes in unmittelbarer Nähe des quantenkritischen Punktes. Beide Messgrößen zeigten hier eine dramatische Entwicklung: Einerseits bewegten sich die Elektronen immer langsamer, wurden also auch immer schwerer, und andererseits kollidierten sie immer häufiger untereinander im völligen Widerspruch zu gängigen theoretischen Voraussagen.

Diese mehrfach überprüften Befunde lassen sich mit bisherigen Theorien nicht mehr vereinbaren. Danach sollte die Existenz der "Schweren Elektronen" am quantenkritischen Punkt nicht berührt sein. Die Forschungsergebnisse zeigen jedoch, dass bei Annäherung an den quantenkritischen Punkt die Quantenfluktuationen zu einer divergierenden (unendlich wachsenden) Masse der "Schweren Elektronen" und einem enormen Anstieg der Rate ihrer gegenseitigen Kollisionen führen. Daraus folgern die Forscher, dass die "Schweren Elektronen" in diesen Materialien am absoluten Nullpunkt nicht mehr existieren können und offenbar in einen magnetischen und einen stromtragenden Anteil auseinanderbrechen.

Aus Sicht der beteiligten Wissenschaftler dreht sich bei diesem überraschenden Forschungsergebnis alles um den Quantenphasenübergang am absoluten Nullpunkt, so Prof. Frank Steglich, Direktor am Max-Planck-Institut für Chemische Physik fester Stoffe: "Es ist jetzt eine Herausforderung für die Theoretiker, das Konzept der Quantenphasenübergänge weiter zu entwickeln. Denn offenbar bestimmt der quantenkritische Punkt Materialeigenschaften wie Magnetismus und Supraleitung nicht nur am absoluten Nullpunkt, sondern abhängig von der Stärke der Quantenfluktuationen auch bei höheren Temperaturen."

Weitere Informationen erhalten Sie von:

Dr. Philipp Gegenwart
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Tel.: +49 (351) 4646 2324
Fax.: +49 (351) 4646 2360
E-Mail:

Dr. Philipp Gegenwart | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/chem_physik_fester_stoffe/index.html

Weitere Berichte zu: Annäherung Nullpunkt Temperatur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften