Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasser in der Nähe eines Schwarzen Lochs gefunden

16.07.2003


Deutsch-italienisches Radioastronomen-Team entdeckt mit dem Effelsberger 100-Meter-Radioteleskop den bisher am weitesten entfernten Megamaser


Abb.: Radiogalaxie 3C403, aufgenommen mit den VLA Telescope (Very Large Array Telescope, Mew Mexico) bei einer Wellenlänge von 3.6 cm. Rechts die Farbcodierung für die Intensität in Jansky (Jy). Der Pfeil zeigt den Galaxienkern. Dessen Spektrum (linke obere Ecke) wurde mit dem Radioteleskop Effelsberg gemessen. Aufgetragen sind Flussdichte gegen Geschwindigkeit.

Foto: National Radio Astronomy Observatory/Rick Perley (NRAO/AUI/NSF)



In der Radiogalaxie 3C403 wurde eine Quelle entdeckt, bei der die Intensität der Strahlung einer einzigen Spektrallinie tausendfach stärker ist als die der Sonne im gesamten Spektralbereich. Die intensive Strahlung eines Wasserdampf-Masers hat ihren Ursprung in der direkten Nachbarschaft eines Schwarzen Lochs. Andrea Tarchi und Marco Chiaberge vom Istituto di Radioastronomia (IRA) in Bologna sowie Christian Henkel and Karl Menten vom Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn beobachteten zum ersten Mal eine solche Emission in einer "klassischen" Radiogalaxie, bei der ein Schwarzes Loch von vielen Millionen Sonnenmassen Energie bis in eine Entfernung von mehr als 100 000 Lichtjahren aussendet. Dieser Wasser-Megamaser ist etwa 750 Millionen Lichtjahre von der Erde entfernt.



Die Radioastronomie ermöglicht es, Bereiche des Weltalls zu erfassen, die der optischen Astronomie nicht zugänglich sind. Dazu gehören kosmische Maser (Microwave Amplification by Stimulated Emission of Radiation) dem Laser vergleichbare Verstärker von Radiowellen. Als Megamaser bezeichnen die Astronomen in anderen Galaxien gefundene extrem starke Maser mit einer Leuchtkraft, die hundert- bis mehrere tausendfach stärker ist als die der Sonne. So angeregter Wasserdampf (H2O) strahlt als Maser bei 1,3 cm Wellenlänge in Form einer einzigen, besonders intensiven Spektrallinie und liefert Informationen über Struktur und Dynamik seiner Umgebung.

Christian Henkel und seine Mitarbeiter, darunter vor allem Andrea Tarchi, haben mehrere Megamaser entdeckt, die meisten davon in aktiven Galaxien. Dabei hatten sie auch solche Galaxien beobachtet, die sehr intensive Radiostrahlung aussenden und in denen bisher keine Megamaser gefunden wurden. Erstmals konnten die Wissenschaftler jetzt in der x-förmigen Galaxie 3C403, die zu diesen "radiolauten" Galaxien gehört, eine solche Strahlungsquelle aufspüren. Sie enthält gleichzeitig den am weitesten entfernten Megamaser, der bisher entdeckt wurde. Dieser befindet sich etwa 750 Millionen Lichtjahre von uns entfernt und bewegt sich auf Grund der Ausdehnung des Universums mit 17.000 km/s von der Milchstraße weg.

Zwar unterscheiden sich "radiolaute" und "radioleise" aktive Galaxien in ihren Eigenschaften. Die Wissenschaftler gehen jedoch davon aus, dass die physikalischen Prozesse in der Umgebung der Schwarzen Löcher ähnlich ablaufen. Die Masse der Schwarzen Löcher kann das Milliardenfache der Masse der Sonne betragen. Sie sind von einer Akkretionsscheibe oder einem Torus aus Staub und Molekülen umgeben. Doch ist es bis heute nicht möglich, Molekülstrahlung aus diesen zentralen Bereichen nachzuweisen. Das liegt vermutlich daran, dass diese Gebiete sehr kompakt sind und nur wenig normale Radiostrahlung aussenden. In Masern dagegen wird die Strahlung verstärkt und kann auf diese Weise auch noch in großer Entfernung gemessen werden. Daher bieten heute Maser die einzige Möglichkeit, die Akkretionsscheiben um Schwarze Löcher zu beobachten.

Die beobachtete Geschwindigkeitsverteilung des Wasserdampfes entspricht den Erwartungen für eine scheibenförmige rotierende Materieverteilung um den Galaxienkern. Endgültige Gewissheit darüber können erst VLBI (Very Long Baseline Interferometrie)-Messungen geben, bei denen weltweit Teleskope zusammengeschaltet werden. Da die Strahlungsintensität sehr gering ist, sind solche Messungen derzeit noch schwer durchzuführen. Anderseits schwankt die Maserstrahlung stark, so dass diese bei einem "Strahlungsausbruch" auch heute schon durch VLBI nachgewiesen werden könnte. Eine solche Untersuchung würde wertvolle Informationen über das "Monster" im Zentrum der Galaxie liefern. "Mit der Entdeckung dieses Masers sind wir eine Runde weiter," sagt Karl Menten, "jetzt müssen wir nur dran bleiben und so lange weiter beobachten, bis die Intensität für VLBI-Beobachtungen ausreicht. Dann schnappen wir es uns."

Diese Entdeckung hat unter Radioastronomen die Suche nach weiteren Megamasern neu angefacht. Wegen seiner großen Sammelfläche und der daraus resultierenden hohen Empfindlichkeit spielt das 100-Meter-Radioteleskop des Max-Planck-Instituts für Radioastronomie eine zentrale Rolle. Messungen dieser Art erfordern lange Beobachtungszeiten, denn die auf der Erde ankommende Strahlung ist sehr schwach und im Suchprogramm müssen viele Galaxien erfasst werden. Zudem kann die gemessene Strahlung stark variieren; oft sind also mehrfache Beobachtungen der gleichen Galaxie erforderlich. Hierbei hat sich nun die Hartnäckigkeit von Christian Henkel ausgezahlt, der die langfristige Beobachtungskampagne am MPIfR bei der Suche nach extragalaktischen Wassermasern leitet. Denn jetzt wurde nicht nur der bisher am weitesten entfernte Wassermaser aufgespürt. "Soviel Wasser habe ich in meinem ganzen Leben noch nicht auf einmal gesehen," ist sein Fazit. Bis zum heutigen Tag sind 31 solcher H2O Megamaser-Galaxien entdeckt worden, davon mehr als die Hälfte mit dem 100-Meter-Radioteleskop in Effelsberg.


Originalveröffentlichung:

Tarchi, A., Henkel, C., Chiaberge, M., & Menten, K. M.
Discovery of a Luminous Water Megamaser in the FR II Radiogalaxy 3C403
Astronomy & Astrophysics, accepted, (astro-ph/0307068) 2003


Weitere Informationen erhalten Sie von:

Dr. Christian Henkel
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: 0228 525 - 305
Fax.: 0228 525 - 229
E-Mail: chenkel@mpifr-bonn.mpg.de


Andrea Tarchi
Max-Planck-Institut für Radioastronomie, Sardinien/Italien
Tel.: +39 051 639 9351
Fax.: +39 051 639 9431
E-Mail: a.tarchi@ira.cnr.it


Dr. Norbert Junkes
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: 0228 525 - 399
Fax.: 0228 525 - 229
E-Mail: njunkes@mpifr-bonn.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/1999/pri40_99.htm
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/radioastronomie/index.html

Weitere Berichte zu: 100-Meter-Radioteleskop Lichtjahre Megamaser Menten Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise