Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasser in der Nähe eines Schwarzen Lochs gefunden

16.07.2003


Deutsch-italienisches Radioastronomen-Team entdeckt mit dem Effelsberger 100-Meter-Radioteleskop den bisher am weitesten entfernten Megamaser


Abb.: Radiogalaxie 3C403, aufgenommen mit den VLA Telescope (Very Large Array Telescope, Mew Mexico) bei einer Wellenlänge von 3.6 cm. Rechts die Farbcodierung für die Intensität in Jansky (Jy). Der Pfeil zeigt den Galaxienkern. Dessen Spektrum (linke obere Ecke) wurde mit dem Radioteleskop Effelsberg gemessen. Aufgetragen sind Flussdichte gegen Geschwindigkeit.

Foto: National Radio Astronomy Observatory/Rick Perley (NRAO/AUI/NSF)



In der Radiogalaxie 3C403 wurde eine Quelle entdeckt, bei der die Intensität der Strahlung einer einzigen Spektrallinie tausendfach stärker ist als die der Sonne im gesamten Spektralbereich. Die intensive Strahlung eines Wasserdampf-Masers hat ihren Ursprung in der direkten Nachbarschaft eines Schwarzen Lochs. Andrea Tarchi und Marco Chiaberge vom Istituto di Radioastronomia (IRA) in Bologna sowie Christian Henkel and Karl Menten vom Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn beobachteten zum ersten Mal eine solche Emission in einer "klassischen" Radiogalaxie, bei der ein Schwarzes Loch von vielen Millionen Sonnenmassen Energie bis in eine Entfernung von mehr als 100 000 Lichtjahren aussendet. Dieser Wasser-Megamaser ist etwa 750 Millionen Lichtjahre von der Erde entfernt.



Die Radioastronomie ermöglicht es, Bereiche des Weltalls zu erfassen, die der optischen Astronomie nicht zugänglich sind. Dazu gehören kosmische Maser (Microwave Amplification by Stimulated Emission of Radiation) dem Laser vergleichbare Verstärker von Radiowellen. Als Megamaser bezeichnen die Astronomen in anderen Galaxien gefundene extrem starke Maser mit einer Leuchtkraft, die hundert- bis mehrere tausendfach stärker ist als die der Sonne. So angeregter Wasserdampf (H2O) strahlt als Maser bei 1,3 cm Wellenlänge in Form einer einzigen, besonders intensiven Spektrallinie und liefert Informationen über Struktur und Dynamik seiner Umgebung.

Christian Henkel und seine Mitarbeiter, darunter vor allem Andrea Tarchi, haben mehrere Megamaser entdeckt, die meisten davon in aktiven Galaxien. Dabei hatten sie auch solche Galaxien beobachtet, die sehr intensive Radiostrahlung aussenden und in denen bisher keine Megamaser gefunden wurden. Erstmals konnten die Wissenschaftler jetzt in der x-förmigen Galaxie 3C403, die zu diesen "radiolauten" Galaxien gehört, eine solche Strahlungsquelle aufspüren. Sie enthält gleichzeitig den am weitesten entfernten Megamaser, der bisher entdeckt wurde. Dieser befindet sich etwa 750 Millionen Lichtjahre von uns entfernt und bewegt sich auf Grund der Ausdehnung des Universums mit 17.000 km/s von der Milchstraße weg.

Zwar unterscheiden sich "radiolaute" und "radioleise" aktive Galaxien in ihren Eigenschaften. Die Wissenschaftler gehen jedoch davon aus, dass die physikalischen Prozesse in der Umgebung der Schwarzen Löcher ähnlich ablaufen. Die Masse der Schwarzen Löcher kann das Milliardenfache der Masse der Sonne betragen. Sie sind von einer Akkretionsscheibe oder einem Torus aus Staub und Molekülen umgeben. Doch ist es bis heute nicht möglich, Molekülstrahlung aus diesen zentralen Bereichen nachzuweisen. Das liegt vermutlich daran, dass diese Gebiete sehr kompakt sind und nur wenig normale Radiostrahlung aussenden. In Masern dagegen wird die Strahlung verstärkt und kann auf diese Weise auch noch in großer Entfernung gemessen werden. Daher bieten heute Maser die einzige Möglichkeit, die Akkretionsscheiben um Schwarze Löcher zu beobachten.

Die beobachtete Geschwindigkeitsverteilung des Wasserdampfes entspricht den Erwartungen für eine scheibenförmige rotierende Materieverteilung um den Galaxienkern. Endgültige Gewissheit darüber können erst VLBI (Very Long Baseline Interferometrie)-Messungen geben, bei denen weltweit Teleskope zusammengeschaltet werden. Da die Strahlungsintensität sehr gering ist, sind solche Messungen derzeit noch schwer durchzuführen. Anderseits schwankt die Maserstrahlung stark, so dass diese bei einem "Strahlungsausbruch" auch heute schon durch VLBI nachgewiesen werden könnte. Eine solche Untersuchung würde wertvolle Informationen über das "Monster" im Zentrum der Galaxie liefern. "Mit der Entdeckung dieses Masers sind wir eine Runde weiter," sagt Karl Menten, "jetzt müssen wir nur dran bleiben und so lange weiter beobachten, bis die Intensität für VLBI-Beobachtungen ausreicht. Dann schnappen wir es uns."

Diese Entdeckung hat unter Radioastronomen die Suche nach weiteren Megamasern neu angefacht. Wegen seiner großen Sammelfläche und der daraus resultierenden hohen Empfindlichkeit spielt das 100-Meter-Radioteleskop des Max-Planck-Instituts für Radioastronomie eine zentrale Rolle. Messungen dieser Art erfordern lange Beobachtungszeiten, denn die auf der Erde ankommende Strahlung ist sehr schwach und im Suchprogramm müssen viele Galaxien erfasst werden. Zudem kann die gemessene Strahlung stark variieren; oft sind also mehrfache Beobachtungen der gleichen Galaxie erforderlich. Hierbei hat sich nun die Hartnäckigkeit von Christian Henkel ausgezahlt, der die langfristige Beobachtungskampagne am MPIfR bei der Suche nach extragalaktischen Wassermasern leitet. Denn jetzt wurde nicht nur der bisher am weitesten entfernte Wassermaser aufgespürt. "Soviel Wasser habe ich in meinem ganzen Leben noch nicht auf einmal gesehen," ist sein Fazit. Bis zum heutigen Tag sind 31 solcher H2O Megamaser-Galaxien entdeckt worden, davon mehr als die Hälfte mit dem 100-Meter-Radioteleskop in Effelsberg.


Originalveröffentlichung:

Tarchi, A., Henkel, C., Chiaberge, M., & Menten, K. M.
Discovery of a Luminous Water Megamaser in the FR II Radiogalaxy 3C403
Astronomy & Astrophysics, accepted, (astro-ph/0307068) 2003


Weitere Informationen erhalten Sie von:

Dr. Christian Henkel
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: 0228 525 - 305
Fax.: 0228 525 - 229
E-Mail: chenkel@mpifr-bonn.mpg.de


Andrea Tarchi
Max-Planck-Institut für Radioastronomie, Sardinien/Italien
Tel.: +39 051 639 9351
Fax.: +39 051 639 9431
E-Mail: a.tarchi@ira.cnr.it


Dr. Norbert Junkes
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: 0228 525 - 399
Fax.: 0228 525 - 229
E-Mail: njunkes@mpifr-bonn.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/1999/pri40_99.htm
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/radioastronomie/index.html

Weitere Berichte zu: 100-Meter-Radioteleskop Lichtjahre Megamaser Menten Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten