Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem größten Zielfernrohr auf Planetenjagd

13.06.2003


Max-Planck-Institut für Astronomie und ESO starten Projekt CHEOPS zur direkten Abbildung extrasolarer Planeten mit dem Very Large Telescope


Skizze des geplanten CHEOPS-Instruments an der Nasmyth-Plattform des Very Large Telecops (blau im Hintergrund). Rot dargestellt ist der Wellenfrontsensor, orange das differentielle Polarimeter und grün der abbildende Spektrograph.

Foto: Max-Planck-Institut für Astronomie


Links oben: Kombinierte Spektren von Stern und Planet auf dem Detektor von CHEOPS (Simulation). Mitte: Differenzbild zwischen drei Spektralbereichen, einer davon eine Absorptionslinie der Planetenatmosphäre. Rechts unten: Schnitt durch die mittlere Abbildung. Der Planet, mit einem Kontrast von 1:1 Million zum Zentralstern im Abstand einer Winkelsekunde, wird hier nach 10 s simulierter Beobachtungszeit mit einem Signal-zu-Rausch-Verhältnis von 10 detektiert.

Foto: Max-Planck-Institut für Astronomie



Einen Vertrag über die Durchführung einer Machbarkeitsstudie zur direkten Abbildung extrasolarer Planeten von den Teleskopen der ESO in Chile aus haben das Max-Planck-Institut für Astronomie (MPIA), Heidelberg, und die Europäische Südsternwarte (ESO), Garching, soeben unterzeichnet. Das MPIA führt hierzu ein europäisches Konsortium, bestehend aus zehn Instituten aus Deutschland, Italien, der Schweiz, Holland und Portugal an. Die Studie soll nachweisen, dass man nach Jupiter-ähnlichen Riesenplaneten bei Sternen in der näheren Umgebung der Sonne auch mit erdgebundenen Teleskopen erfolgreich suchen kann, und gleichzeitig das Konzept für ein dafür geeignetes Instrument entwickeln. Die ESO plant, eines der vier 8-Meter-Teleskope ihres "Very Large Telescope" in Chile ab dem Jahr 2008 mit einem derartigen Instrument auszurüsten.

... mehr zu:
»CHEOPS »Chile »ESO »Planet


Die Studie soll das Konzept für ein Beobachtungsinstrument entwickeln, mit dem es möglich ist, echte Bilder von Jupiter-ähnlichen Planeten bis zu einer Entfernung von etwa 50 Lichtjahren von der Erde aus aufzunehmen. Darüber hinaus könnten Planeten auch in Systemen, die erheblich jünger sind als das Sonnensystem, noch bis in eine Entfernung von etwa 300 Lichtjahren gefunden werden. Doch mit dem Instrument sollen nicht nur die Planeten entdeckt, sondern zugleich auch ihre Atmosphäre spektral und polariemetrisch klassifiziert werden. Daher trägt das Projekt auch den Titel CHEOPS CHarakterisierung Extrasolarer Planeten durch Opto-infrarote Polarimetrie und Spektroskopie.

Einen nahe zur Erde gelegenen, Jupiter-ähnlichen Planeten auf einer ebenfalls Jupiter-ähnlichen Umlaufbahn um sein Zentralgestirn zu entdecken, wäre eine wissenschaftliche Sensation: Damit würde erstmals ein Sternensystem gefunden, welches tatsächlich große Ähnlichkeit mit unserem Sonnensystem aufweist, und das für die weitere Suche nach (bewohnten?) erdähnlicher Planeten mit Hilfe von Weltraummissionen wie "DARWIN" (ESA) und "Terrestrial Planet Finder" (NASA) von großer Bedeutung wäre.

Eine besondere technische Herausforderung ist die Überwindung der extrem hohen Kontraste zwischen Stern und Planet (etwa 1:108) bei extrem kleinen Abständen (weniger als eine Winkelsekunde). Dazu müssen eine Reihe innovativer Techniken eingesetzt werden: Zunächst soll ein Adaptives Optiksystem extrem hoher Qualität die durch die Erdatmosphäre verursachten Bildverzerrungen korrigieren. Damit können Bilder von bislang am Erdboden unerreichter Qualität gewonnen werden. Auf diese Weise sollen bis zu 80 Prozent der Bildqualität eines vergleichbaren Weltraumteleskops im Spektralbereich zwischen sichtbarem und nahem Infrarotlicht erreicht werden. Dieser Teil des Instrumentes soll wesentlich im Max-Planck-Institut für Astronomie in Heidelberg gebaut werden.

Doch diese Technik allein kann das Halo, also den Lichthof der hellen Sterne nicht ausreichend unterdrücken, um das hundertmillionenfach schwächere Signal eines Planeten zu entdecken. Daher wird CHEOPS sowohl ein Spektrometer, ein Projekt des Observatoriums von Padua, als auch ein Polariemeter, das von der ETH Zürich geliefert werden soll, im so genannten differentiellen Modus betreiben. Hierbei werden die eintreffenden Photonen erst nach Wellenlänge oder Polarisationszustand sortiert, bevor sie zu einem Bild aufaddiert werden. Da sich Spektrum und Polarisation der Photonen deutlich unterscheiden, je nachdem ob sie von der Sternen- oder der Planetenoberfläche stammen, kann auf diese Weise ein Differenzbild erzeugt werden, das dann ein detektierbares Planetensignal enthält.

Sind die technischen Schwierigkeiten einmal überwunden, hat ein bodengebundenes Instrument bei der Suche nach extrasolaren Planeten viele Vorteile: Dazu gehören vor allem die im Vergleich zu weltraumgestützten Instrumenten wesentlich geringeren Kosten (Gesamtkosten von CHEOPS: etwa 7 Millionen Euro ) und die sehr schnelle Machbarkeit. Hinzu kommt, dass am Erdboden nach wie vor auch die deutlich größeren Teleskopspiegel zur Verfügung stehen.

Weitere Informationen erhalten Sie von:

Dr. Markus Feldt (Projektleiter)
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 - 528-262
Fax.: 06221 - 528-246
E-Mail: mfeldt@mpia.de

Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 - 528-229
E-Mail: staude@mpia-hd.mpg.de

Dr. Jakob Staude | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/astronomie/index.html

Weitere Berichte zu: CHEOPS Chile ESO Planet

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie