Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem größten Zielfernrohr auf Planetenjagd

13.06.2003


Max-Planck-Institut für Astronomie und ESO starten Projekt CHEOPS zur direkten Abbildung extrasolarer Planeten mit dem Very Large Telescope


Skizze des geplanten CHEOPS-Instruments an der Nasmyth-Plattform des Very Large Telecops (blau im Hintergrund). Rot dargestellt ist der Wellenfrontsensor, orange das differentielle Polarimeter und grün der abbildende Spektrograph.

Foto: Max-Planck-Institut für Astronomie


Links oben: Kombinierte Spektren von Stern und Planet auf dem Detektor von CHEOPS (Simulation). Mitte: Differenzbild zwischen drei Spektralbereichen, einer davon eine Absorptionslinie der Planetenatmosphäre. Rechts unten: Schnitt durch die mittlere Abbildung. Der Planet, mit einem Kontrast von 1:1 Million zum Zentralstern im Abstand einer Winkelsekunde, wird hier nach 10 s simulierter Beobachtungszeit mit einem Signal-zu-Rausch-Verhältnis von 10 detektiert.

Foto: Max-Planck-Institut für Astronomie



Einen Vertrag über die Durchführung einer Machbarkeitsstudie zur direkten Abbildung extrasolarer Planeten von den Teleskopen der ESO in Chile aus haben das Max-Planck-Institut für Astronomie (MPIA), Heidelberg, und die Europäische Südsternwarte (ESO), Garching, soeben unterzeichnet. Das MPIA führt hierzu ein europäisches Konsortium, bestehend aus zehn Instituten aus Deutschland, Italien, der Schweiz, Holland und Portugal an. Die Studie soll nachweisen, dass man nach Jupiter-ähnlichen Riesenplaneten bei Sternen in der näheren Umgebung der Sonne auch mit erdgebundenen Teleskopen erfolgreich suchen kann, und gleichzeitig das Konzept für ein dafür geeignetes Instrument entwickeln. Die ESO plant, eines der vier 8-Meter-Teleskope ihres "Very Large Telescope" in Chile ab dem Jahr 2008 mit einem derartigen Instrument auszurüsten.

... mehr zu:
»CHEOPS »Chile »ESO »Planet


Die Studie soll das Konzept für ein Beobachtungsinstrument entwickeln, mit dem es möglich ist, echte Bilder von Jupiter-ähnlichen Planeten bis zu einer Entfernung von etwa 50 Lichtjahren von der Erde aus aufzunehmen. Darüber hinaus könnten Planeten auch in Systemen, die erheblich jünger sind als das Sonnensystem, noch bis in eine Entfernung von etwa 300 Lichtjahren gefunden werden. Doch mit dem Instrument sollen nicht nur die Planeten entdeckt, sondern zugleich auch ihre Atmosphäre spektral und polariemetrisch klassifiziert werden. Daher trägt das Projekt auch den Titel CHEOPS CHarakterisierung Extrasolarer Planeten durch Opto-infrarote Polarimetrie und Spektroskopie.

Einen nahe zur Erde gelegenen, Jupiter-ähnlichen Planeten auf einer ebenfalls Jupiter-ähnlichen Umlaufbahn um sein Zentralgestirn zu entdecken, wäre eine wissenschaftliche Sensation: Damit würde erstmals ein Sternensystem gefunden, welches tatsächlich große Ähnlichkeit mit unserem Sonnensystem aufweist, und das für die weitere Suche nach (bewohnten?) erdähnlicher Planeten mit Hilfe von Weltraummissionen wie "DARWIN" (ESA) und "Terrestrial Planet Finder" (NASA) von großer Bedeutung wäre.

Eine besondere technische Herausforderung ist die Überwindung der extrem hohen Kontraste zwischen Stern und Planet (etwa 1:108) bei extrem kleinen Abständen (weniger als eine Winkelsekunde). Dazu müssen eine Reihe innovativer Techniken eingesetzt werden: Zunächst soll ein Adaptives Optiksystem extrem hoher Qualität die durch die Erdatmosphäre verursachten Bildverzerrungen korrigieren. Damit können Bilder von bislang am Erdboden unerreichter Qualität gewonnen werden. Auf diese Weise sollen bis zu 80 Prozent der Bildqualität eines vergleichbaren Weltraumteleskops im Spektralbereich zwischen sichtbarem und nahem Infrarotlicht erreicht werden. Dieser Teil des Instrumentes soll wesentlich im Max-Planck-Institut für Astronomie in Heidelberg gebaut werden.

Doch diese Technik allein kann das Halo, also den Lichthof der hellen Sterne nicht ausreichend unterdrücken, um das hundertmillionenfach schwächere Signal eines Planeten zu entdecken. Daher wird CHEOPS sowohl ein Spektrometer, ein Projekt des Observatoriums von Padua, als auch ein Polariemeter, das von der ETH Zürich geliefert werden soll, im so genannten differentiellen Modus betreiben. Hierbei werden die eintreffenden Photonen erst nach Wellenlänge oder Polarisationszustand sortiert, bevor sie zu einem Bild aufaddiert werden. Da sich Spektrum und Polarisation der Photonen deutlich unterscheiden, je nachdem ob sie von der Sternen- oder der Planetenoberfläche stammen, kann auf diese Weise ein Differenzbild erzeugt werden, das dann ein detektierbares Planetensignal enthält.

Sind die technischen Schwierigkeiten einmal überwunden, hat ein bodengebundenes Instrument bei der Suche nach extrasolaren Planeten viele Vorteile: Dazu gehören vor allem die im Vergleich zu weltraumgestützten Instrumenten wesentlich geringeren Kosten (Gesamtkosten von CHEOPS: etwa 7 Millionen Euro ) und die sehr schnelle Machbarkeit. Hinzu kommt, dass am Erdboden nach wie vor auch die deutlich größeren Teleskopspiegel zur Verfügung stehen.

Weitere Informationen erhalten Sie von:

Dr. Markus Feldt (Projektleiter)
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 - 528-262
Fax.: 06221 - 528-246
E-Mail: mfeldt@mpia.de

Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 - 528-229
E-Mail: staude@mpia-hd.mpg.de

Dr. Jakob Staude | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/astronomie/index.html

Weitere Berichte zu: CHEOPS Chile ESO Planet

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie