Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem größten Zielfernrohr auf Planetenjagd

13.06.2003


Max-Planck-Institut für Astronomie und ESO starten Projekt CHEOPS zur direkten Abbildung extrasolarer Planeten mit dem Very Large Telescope


Skizze des geplanten CHEOPS-Instruments an der Nasmyth-Plattform des Very Large Telecops (blau im Hintergrund). Rot dargestellt ist der Wellenfrontsensor, orange das differentielle Polarimeter und grün der abbildende Spektrograph.

Foto: Max-Planck-Institut für Astronomie


Links oben: Kombinierte Spektren von Stern und Planet auf dem Detektor von CHEOPS (Simulation). Mitte: Differenzbild zwischen drei Spektralbereichen, einer davon eine Absorptionslinie der Planetenatmosphäre. Rechts unten: Schnitt durch die mittlere Abbildung. Der Planet, mit einem Kontrast von 1:1 Million zum Zentralstern im Abstand einer Winkelsekunde, wird hier nach 10 s simulierter Beobachtungszeit mit einem Signal-zu-Rausch-Verhältnis von 10 detektiert.

Foto: Max-Planck-Institut für Astronomie



Einen Vertrag über die Durchführung einer Machbarkeitsstudie zur direkten Abbildung extrasolarer Planeten von den Teleskopen der ESO in Chile aus haben das Max-Planck-Institut für Astronomie (MPIA), Heidelberg, und die Europäische Südsternwarte (ESO), Garching, soeben unterzeichnet. Das MPIA führt hierzu ein europäisches Konsortium, bestehend aus zehn Instituten aus Deutschland, Italien, der Schweiz, Holland und Portugal an. Die Studie soll nachweisen, dass man nach Jupiter-ähnlichen Riesenplaneten bei Sternen in der näheren Umgebung der Sonne auch mit erdgebundenen Teleskopen erfolgreich suchen kann, und gleichzeitig das Konzept für ein dafür geeignetes Instrument entwickeln. Die ESO plant, eines der vier 8-Meter-Teleskope ihres "Very Large Telescope" in Chile ab dem Jahr 2008 mit einem derartigen Instrument auszurüsten.

... mehr zu:
»CHEOPS »Chile »ESO »Planet


Die Studie soll das Konzept für ein Beobachtungsinstrument entwickeln, mit dem es möglich ist, echte Bilder von Jupiter-ähnlichen Planeten bis zu einer Entfernung von etwa 50 Lichtjahren von der Erde aus aufzunehmen. Darüber hinaus könnten Planeten auch in Systemen, die erheblich jünger sind als das Sonnensystem, noch bis in eine Entfernung von etwa 300 Lichtjahren gefunden werden. Doch mit dem Instrument sollen nicht nur die Planeten entdeckt, sondern zugleich auch ihre Atmosphäre spektral und polariemetrisch klassifiziert werden. Daher trägt das Projekt auch den Titel CHEOPS CHarakterisierung Extrasolarer Planeten durch Opto-infrarote Polarimetrie und Spektroskopie.

Einen nahe zur Erde gelegenen, Jupiter-ähnlichen Planeten auf einer ebenfalls Jupiter-ähnlichen Umlaufbahn um sein Zentralgestirn zu entdecken, wäre eine wissenschaftliche Sensation: Damit würde erstmals ein Sternensystem gefunden, welches tatsächlich große Ähnlichkeit mit unserem Sonnensystem aufweist, und das für die weitere Suche nach (bewohnten?) erdähnlicher Planeten mit Hilfe von Weltraummissionen wie "DARWIN" (ESA) und "Terrestrial Planet Finder" (NASA) von großer Bedeutung wäre.

Eine besondere technische Herausforderung ist die Überwindung der extrem hohen Kontraste zwischen Stern und Planet (etwa 1:108) bei extrem kleinen Abständen (weniger als eine Winkelsekunde). Dazu müssen eine Reihe innovativer Techniken eingesetzt werden: Zunächst soll ein Adaptives Optiksystem extrem hoher Qualität die durch die Erdatmosphäre verursachten Bildverzerrungen korrigieren. Damit können Bilder von bislang am Erdboden unerreichter Qualität gewonnen werden. Auf diese Weise sollen bis zu 80 Prozent der Bildqualität eines vergleichbaren Weltraumteleskops im Spektralbereich zwischen sichtbarem und nahem Infrarotlicht erreicht werden. Dieser Teil des Instrumentes soll wesentlich im Max-Planck-Institut für Astronomie in Heidelberg gebaut werden.

Doch diese Technik allein kann das Halo, also den Lichthof der hellen Sterne nicht ausreichend unterdrücken, um das hundertmillionenfach schwächere Signal eines Planeten zu entdecken. Daher wird CHEOPS sowohl ein Spektrometer, ein Projekt des Observatoriums von Padua, als auch ein Polariemeter, das von der ETH Zürich geliefert werden soll, im so genannten differentiellen Modus betreiben. Hierbei werden die eintreffenden Photonen erst nach Wellenlänge oder Polarisationszustand sortiert, bevor sie zu einem Bild aufaddiert werden. Da sich Spektrum und Polarisation der Photonen deutlich unterscheiden, je nachdem ob sie von der Sternen- oder der Planetenoberfläche stammen, kann auf diese Weise ein Differenzbild erzeugt werden, das dann ein detektierbares Planetensignal enthält.

Sind die technischen Schwierigkeiten einmal überwunden, hat ein bodengebundenes Instrument bei der Suche nach extrasolaren Planeten viele Vorteile: Dazu gehören vor allem die im Vergleich zu weltraumgestützten Instrumenten wesentlich geringeren Kosten (Gesamtkosten von CHEOPS: etwa 7 Millionen Euro ) und die sehr schnelle Machbarkeit. Hinzu kommt, dass am Erdboden nach wie vor auch die deutlich größeren Teleskopspiegel zur Verfügung stehen.

Weitere Informationen erhalten Sie von:

Dr. Markus Feldt (Projektleiter)
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 - 528-262
Fax.: 06221 - 528-246
E-Mail: mfeldt@mpia.de

Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 - 528-229
E-Mail: staude@mpia-hd.mpg.de

Dr. Jakob Staude | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/astronomie/index.html

Weitere Berichte zu: CHEOPS Chile ESO Planet

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive