Wie Atome zur Ordnung gerufen werden

Der Chemnitzer Physik-Professor Peter Häussler (r.) und Doktorand Jose Barzola-Quiquia aus Peru kontrollieren eine Anlage zur Untersuchung elektronischer Eigenschaften amorpher Materialien bei tiefen Temperaturen. (Foto: TU Chemnitz/Uwe Meinhold).

Chemnitzer Physiker entschlüsseln Geheimnis, warum unter scheinbar chaotischen Umständen geordnete Strukturen entstehen können – Elektronen als Ordnungsmacht

Wer denkt, im Chaos herrsche ein heilloses Durcheinander, der irrt. Physikern der Technischen Universität Chemnitz ist es gelungen, in flüssigen und amorphen Systemen, die zunächst ungeordnet erscheinen, einen fundamentalen Ordnungsmechanismus nachzuweisen. Sie haben herausgefunden, dass sich Atome, die sich auf dem Wege der Kristallbildung befinden, stets auf ähnliche Weise zu einer ganz speziellen Ordnung organisieren und den wesentlichen Impuls dafür von der Gesamtheit aller Elektronen erhalten. Als Ergebnis entstehen dabei Metalle, Salze oder auch Halbleiter.

Bislang gab die Art und Weise, wie sich Atome aus dem Chaos heraus zu größeren Strukturen zusammenfinden, der Wissenschaft noch immer Rätsel auf. Selbst mit den leistungsstärksten Rechnern ist es nicht möglich, die Bildung von Kristallen quantenmechanisch zu berechnen. Durch derartige Simulationen können nur wenige zehn bis hundert Atome korrekt berücksichtigt werden – zu wenige, um ein kollektives Vorgehen der Atome und Elektronen bei der Strukturbildung nachzuweisen. An der Professur Physik Dünner Schichten der TU Chemnitz ist man nun einem solchen kollektiven Prozess auf die Schliche gekommen. Durch eine Kombination verschiedener experimenteller Methoden konnte gezeigt werden, dass sich Atome in ungeordneten Systemen als Folge eines Resonanzeffektes von selbst in einer sphärisch-periodischen Ordnung aneinanderfügen. Gesteuert wird dieser Prozess nicht durch die in der Atomhülle befindlichen Elektronen, sondern durch die Gesamtheit aller Elektronen. „Man könnte sagen, dass die Atome durch die Macht aller Elektronen regelrecht zur Ordnung gerufen werden. Und beide sind glücklich, sowohl die Elektronen als auch die Atome, weil sie damit eine energetisch günstige Gesamtsituation einstellen können“, sagt Prof. Dr. Peter Häussler, der die Chemnitzer Professur Physik Dünner Schichten leitet. „Die in gleicher Wellenlänge schwingenden Elektronen geraten mit der sich bildenden atomaren Struktur in kollektive Resonanz, bis die günstige sphärisch-periodische Anordnung erreicht ist“, so der TU-Physiker.

Mit diesem Wissen ist bereits heute möglich, aus dem Periodensystem der Elemente heraus wichtige Eigenschaften der Struktur und des elektronischen Verhaltens von Metallen, Halbleitern oder Isolatoren vorherzusagen. Prof. Häussler: „Man muss nur wissen, wie viele Elektronen vorhanden sind. Die Elektronendichte bestimmt, wie der Resonanz-Prozess abläuft. Je besser die Resonanz, desto stabiler wird die atomare Struktur und desto schlechter leitend ist das Material.“ Dadurch ist es im Prinzip möglich, die Struktur von Materialien vorherzusagen, ohne große Computer nutzen zu müssen. „Das Resonanzmodell wird es in Zukunft erlauben, Materialien nach Maß zu schneidern und gewünschte Anwendungen gezielt zu beeinflussen“, prognostiziert Prof. Peter Häussler. Zudem sei zu erwarten, dass diese fundamental neue Erkenntnis sich auch in anderen Forschungsgebieten auswirke. So konnte bereits mit Hilfe des Chemnitzer Modells erklärt werden, wie beim Aufdampfen von Eisen-Schichten auf Silizium-Wafer solche Resonanz-Prozesse selbst in der Nähe des absoluten Temperatur-Nullpunktes bei minus 269 Grad Celcius ablaufen und zu Grenzschicht-Reaktionen führen.

Teile der Untersuchungen wurden durch die Deutsche Forschungsgemeinschaft finanziell unterstützt. Mit mehreren TU-Professuren, die im Institut für Physik an „ungeordneten Systemen“ arbeiten, zählt Chemnitz auf diesem Gebiet zu den wichtigsten Forschungszentren in Deutschland.

Weitere Informationen:

Prof. Dr. Peter Häussler
Professur für Physik Dünner Schichten der TU Chemnitz
Telefon: 0371 – 53131-40
E-Mail: haeussler@physik.tu-chemnitz.de

Media Contact

Alexander Friebel idw

Weitere Informationen:

http://www.tu-chemnitz.de/physik/phds

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer