Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Atome zur Ordnung gerufen werden

14.04.2003


Chemnitzer Physiker entschlüsseln Geheimnis, warum unter scheinbar chaotischen Umständen geordnete Strukturen entstehen können - Elektronen als Ordnungsmacht


Der Chemnitzer Physik-Professor Peter Häussler (r.) und Doktorand Jose Barzola-Quiquia aus Peru kontrollieren eine Anlage zur Untersuchung elektronischer Eigenschaften amorpher Materialien bei tiefen Temperaturen. (Foto: TU Chemnitz/Uwe Meinhold).



Wer denkt, im Chaos herrsche ein heilloses Durcheinander, der irrt. Physikern der Technischen Universität Chemnitz ist es gelungen, in flüssigen und amorphen Systemen, die zunächst ungeordnet erscheinen, einen fundamentalen Ordnungsmechanismus nachzuweisen. Sie haben herausgefunden, dass sich Atome, die sich auf dem Wege der Kristallbildung befinden, stets auf ähnliche Weise zu einer ganz speziellen Ordnung organisieren und den wesentlichen Impuls dafür von der Gesamtheit aller Elektronen erhalten. Als Ergebnis entstehen dabei Metalle, Salze oder auch Halbleiter.

... mehr zu:
»Atom »Elektron »Physik »Schicht


Bislang gab die Art und Weise, wie sich Atome aus dem Chaos heraus zu größeren Strukturen zusammenfinden, der Wissenschaft noch immer Rätsel auf. Selbst mit den leistungsstärksten Rechnern ist es nicht möglich, die Bildung von Kristallen quantenmechanisch zu berechnen. Durch derartige Simulationen können nur wenige zehn bis hundert Atome korrekt berücksichtigt werden - zu wenige, um ein kollektives Vorgehen der Atome und Elektronen bei der Strukturbildung nachzuweisen. An der Professur Physik Dünner Schichten der TU Chemnitz ist man nun einem solchen kollektiven Prozess auf die Schliche gekommen. Durch eine Kombination verschiedener experimenteller Methoden konnte gezeigt werden, dass sich Atome in ungeordneten Systemen als Folge eines Resonanzeffektes von selbst in einer sphärisch-periodischen Ordnung aneinanderfügen. Gesteuert wird dieser Prozess nicht durch die in der Atomhülle befindlichen Elektronen, sondern durch die Gesamtheit aller Elektronen. "Man könnte sagen, dass die Atome durch die Macht aller Elektronen regelrecht zur Ordnung gerufen werden. Und beide sind glücklich, sowohl die Elektronen als auch die Atome, weil sie damit eine energetisch günstige Gesamtsituation einstellen können", sagt Prof. Dr. Peter Häussler, der die Chemnitzer Professur Physik Dünner Schichten leitet. "Die in gleicher Wellenlänge schwingenden Elektronen geraten mit der sich bildenden atomaren Struktur in kollektive Resonanz, bis die günstige sphärisch-periodische Anordnung erreicht ist", so der TU-Physiker.

Mit diesem Wissen ist bereits heute möglich, aus dem Periodensystem der Elemente heraus wichtige Eigenschaften der Struktur und des elektronischen Verhaltens von Metallen, Halbleitern oder Isolatoren vorherzusagen. Prof. Häussler: "Man muss nur wissen, wie viele Elektronen vorhanden sind. Die Elektronendichte bestimmt, wie der Resonanz-Prozess abläuft. Je besser die Resonanz, desto stabiler wird die atomare Struktur und desto schlechter leitend ist das Material." Dadurch ist es im Prinzip möglich, die Struktur von Materialien vorherzusagen, ohne große Computer nutzen zu müssen. "Das Resonanzmodell wird es in Zukunft erlauben, Materialien nach Maß zu schneidern und gewünschte Anwendungen gezielt zu beeinflussen", prognostiziert Prof. Peter Häussler. Zudem sei zu erwarten, dass diese fundamental neue Erkenntnis sich auch in anderen Forschungsgebieten auswirke. So konnte bereits mit Hilfe des Chemnitzer Modells erklärt werden, wie beim Aufdampfen von Eisen-Schichten auf Silizium-Wafer solche Resonanz-Prozesse selbst in der Nähe des absoluten Temperatur-Nullpunktes bei minus 269 Grad Celcius ablaufen und zu Grenzschicht-Reaktionen führen.

Teile der Untersuchungen wurden durch die Deutsche Forschungsgemeinschaft finanziell unterstützt. Mit mehreren TU-Professuren, die im Institut für Physik an "ungeordneten Systemen" arbeiten, zählt Chemnitz auf diesem Gebiet zu den wichtigsten Forschungszentren in Deutschland.

Weitere Informationen:

Prof. Dr. Peter Häussler
Professur für Physik Dünner Schichten der TU Chemnitz
Telefon: 0371 - 53131-40
E-Mail: haeussler@physik.tu-chemnitz.de


Alexander Friebel | idw
Weitere Informationen:
http://www.tu-chemnitz.de/physik/phds

Weitere Berichte zu: Atom Elektron Physik Schicht

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie