Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Atome zur Ordnung gerufen werden

14.04.2003


Chemnitzer Physiker entschlüsseln Geheimnis, warum unter scheinbar chaotischen Umständen geordnete Strukturen entstehen können - Elektronen als Ordnungsmacht


Der Chemnitzer Physik-Professor Peter Häussler (r.) und Doktorand Jose Barzola-Quiquia aus Peru kontrollieren eine Anlage zur Untersuchung elektronischer Eigenschaften amorpher Materialien bei tiefen Temperaturen. (Foto: TU Chemnitz/Uwe Meinhold).



Wer denkt, im Chaos herrsche ein heilloses Durcheinander, der irrt. Physikern der Technischen Universität Chemnitz ist es gelungen, in flüssigen und amorphen Systemen, die zunächst ungeordnet erscheinen, einen fundamentalen Ordnungsmechanismus nachzuweisen. Sie haben herausgefunden, dass sich Atome, die sich auf dem Wege der Kristallbildung befinden, stets auf ähnliche Weise zu einer ganz speziellen Ordnung organisieren und den wesentlichen Impuls dafür von der Gesamtheit aller Elektronen erhalten. Als Ergebnis entstehen dabei Metalle, Salze oder auch Halbleiter.

... mehr zu:
»Atom »Elektron »Physik »Schicht


Bislang gab die Art und Weise, wie sich Atome aus dem Chaos heraus zu größeren Strukturen zusammenfinden, der Wissenschaft noch immer Rätsel auf. Selbst mit den leistungsstärksten Rechnern ist es nicht möglich, die Bildung von Kristallen quantenmechanisch zu berechnen. Durch derartige Simulationen können nur wenige zehn bis hundert Atome korrekt berücksichtigt werden - zu wenige, um ein kollektives Vorgehen der Atome und Elektronen bei der Strukturbildung nachzuweisen. An der Professur Physik Dünner Schichten der TU Chemnitz ist man nun einem solchen kollektiven Prozess auf die Schliche gekommen. Durch eine Kombination verschiedener experimenteller Methoden konnte gezeigt werden, dass sich Atome in ungeordneten Systemen als Folge eines Resonanzeffektes von selbst in einer sphärisch-periodischen Ordnung aneinanderfügen. Gesteuert wird dieser Prozess nicht durch die in der Atomhülle befindlichen Elektronen, sondern durch die Gesamtheit aller Elektronen. "Man könnte sagen, dass die Atome durch die Macht aller Elektronen regelrecht zur Ordnung gerufen werden. Und beide sind glücklich, sowohl die Elektronen als auch die Atome, weil sie damit eine energetisch günstige Gesamtsituation einstellen können", sagt Prof. Dr. Peter Häussler, der die Chemnitzer Professur Physik Dünner Schichten leitet. "Die in gleicher Wellenlänge schwingenden Elektronen geraten mit der sich bildenden atomaren Struktur in kollektive Resonanz, bis die günstige sphärisch-periodische Anordnung erreicht ist", so der TU-Physiker.

Mit diesem Wissen ist bereits heute möglich, aus dem Periodensystem der Elemente heraus wichtige Eigenschaften der Struktur und des elektronischen Verhaltens von Metallen, Halbleitern oder Isolatoren vorherzusagen. Prof. Häussler: "Man muss nur wissen, wie viele Elektronen vorhanden sind. Die Elektronendichte bestimmt, wie der Resonanz-Prozess abläuft. Je besser die Resonanz, desto stabiler wird die atomare Struktur und desto schlechter leitend ist das Material." Dadurch ist es im Prinzip möglich, die Struktur von Materialien vorherzusagen, ohne große Computer nutzen zu müssen. "Das Resonanzmodell wird es in Zukunft erlauben, Materialien nach Maß zu schneidern und gewünschte Anwendungen gezielt zu beeinflussen", prognostiziert Prof. Peter Häussler. Zudem sei zu erwarten, dass diese fundamental neue Erkenntnis sich auch in anderen Forschungsgebieten auswirke. So konnte bereits mit Hilfe des Chemnitzer Modells erklärt werden, wie beim Aufdampfen von Eisen-Schichten auf Silizium-Wafer solche Resonanz-Prozesse selbst in der Nähe des absoluten Temperatur-Nullpunktes bei minus 269 Grad Celcius ablaufen und zu Grenzschicht-Reaktionen führen.

Teile der Untersuchungen wurden durch die Deutsche Forschungsgemeinschaft finanziell unterstützt. Mit mehreren TU-Professuren, die im Institut für Physik an "ungeordneten Systemen" arbeiten, zählt Chemnitz auf diesem Gebiet zu den wichtigsten Forschungszentren in Deutschland.

Weitere Informationen:

Prof. Dr. Peter Häussler
Professur für Physik Dünner Schichten der TU Chemnitz
Telefon: 0371 - 53131-40
E-Mail: haeussler@physik.tu-chemnitz.de


Alexander Friebel | idw
Weitere Informationen:
http://www.tu-chemnitz.de/physik/phds

Weitere Berichte zu: Atom Elektron Physik Schicht

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau