Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse über Kleinplaneten im frühen Sonnensystem

01.04.2003


Dr. Mario Trieloff, Mineralogisches Institut der Universität Heidelberg: Ergebnisse sind für die Geschwindigkeit der Planetenbildung im frühen Sonnensystem wichtig, und somit auch für die Wahrscheinlichkeit der Planetenbildung um andere junge Sterne



"Unsere Forschungsergebnisse erlauben die detaillierte Rekonstruktion der Abkühlungsgeschichte eines Asteroiden im frühen Sonnensystem. Sie zeigen, dass die Zerfallswärme des kurzlebigen Isotops 26Al zur effektiven Erwärmung der Kleinplaneten geführt hat. Somit muss die Planetesimalbildung sehr schnell erfolgt sein." Mit diesen Worten fasst Dr. Mario Trieloff vom Mineralogischen Institut der Universität Heidelberg eine neue Arbeit zusammen, die in der Ausgabe des Wissenschaftsmagazins "Nature" vom 3. April veröffentlicht wird ("Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry" von Mario Trieloff (Mineralogisches Institut der Universität Heidelberg), Elmar Jessberger (Institut für Planetologie, Universität Münster), Ingrid Herrwerth (Max-Planck-Institut für Kernphysik, Heidelberg), Jens Hopp (Mineralogisches Institut, Heidelberg) sowie Christine Fiéni, Marianne Ghélis, Michèle Bourot-Denise und Paul Pellas (Naturhistorisches Museum, Paris).



Unser Sonnensystem entstand vor etwa 4600 Millionen Jahren aus einer interstellaren Wolke aus Gas und Staub. Nach Bildung der Ursonne war diese noch für etwa zehn Millionen Jahre von einer lokalen Gas- und Staubhülle umgeben, aus der sich dann auch kleinere Körper und schließlich die Planeten bildeten. Zwischen Mars und Jupiter kam dieser Akkretionsprozess zum Stillstand, als die Körper nur wenige hundert Kilometer groß waren. Von diesen Kleinplaneten, den Asteroiden, werden durch Zusammenstöße untereinander immer wieder Bruchstücke abgespalten, die dann auch auf der Erde als Meteoriten niedergehen.

Durch geowissenschaftliche Laboruntersuchungen kann an diesen die Vorstufe der Planetenbildung im frühen Sonnensystem studiert werden. Meteoriten kennt man von kleinen Körpern, die sich ähnlich wie die erdähnlichen Planeten erhitzten, dabei teilweise aufschmolzen, worauf sich ein Metallkern und ein Silikatmantel bildete. Es gibt aber auch urtümlichere Meteorite (die so genannten Chondrite), die nur mäßig erwärmt wurden, so dass sich Metall und Silikat nicht voneinander trennten.

"Wir haben Meteoritengestein, das aus unterschied-lichen Tiefen eines solchen nicht aufgeschmolzenen Asteroiden stammt, mit verschiedenen hochpräzisen Datierungsmethoden untersucht, die den Zerfall der natürlichen radioaktiven Isotope 40K und 244Pu nutzen. Dadurch konnte die Abkühlgeschichte dieses Asteroiden detailliert rekonstruiert werden. Es zeigte sich, dass die am stärksten - bis auf etwa 850°C - erhitzten Gesteine am längsten - etwa 160 Millionen Jahre - zur Abkühlung bis auf etwa 120°C benötigten, also aus dem Zentrum des Körpers stammen", so Trieloff.

Dagegen kühlten die nur auf etwa 650°C erhitzten Gesteine innerhalb weniger Millionen Jahre ab, und zwar in oberflächennahen Bereichen. Dieses Auskühlverhalten zeigt zum ersten Mal, dass ein Asteroid tatsächlich durch eine innere Wärmequelle erhitzt wurde. Dies geschah durch die Zerfallswärme des kurzlebigen Isotops 26Al, das nur im frühen Sonnensystem aktiv war. Wegen der sehr kurzen Halbwertszeit von 26Al von nur 0,72 Millionen Jahren musste sich also der Asteroid innerhalb weniger Millionen Jahre sehr schnell bilden, damit überhaupt noch eine effektive Aufheizung möglich war.

Diese Ergebnisse sind im Einklang mit theoretischen Überlegungen einer sehr schnellen Bildung erdähnlicher Planeten in zirkumstellaren Staubhüllen. "Unsere Resultate zeigen, dass dies vor allem in unserem eigenen Sonnensystem der Fall war." Das sei wichtig, weil die Gas- und Staubhüllen, von denen junge Sterne umgeben sind, nur eine begrenzte Lebensdauer von etwa zehn Millionen Jahren haben. Nur aus diesem Material können sich aber Planeten bilden. "Da in unserem Sonnensystem dieser Prozess schnell genug vonstatten ging, kann man annehmen, dass auch um andere Sterne - aufgrund ähnlich ablaufender Prozesse - Planetenbildung wahrscheinlich ist", sagt Trieloff.

Rückfragen bitte an:

PD Dr. Mario Trieloff
Mineralogisches Institut
der Universität Heidelberg
Im Neuenheimer Feld 236, 69120 Heidelberg
Tel. 06221 - 546022, Fax -544805
E-Mail trieloff@min.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Asteroid Kleinplanet Planetenbildung Sonnensystem

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie