Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hyperschnelle Lichtblitze enthüllen Innenleben von Molekülen

21.02.2003


Forscherteam gelingen erstmals Serien absolut identischer ultrakurzer Laserpulse, die künftig schnelle elektronische Vorgänge im Inneren von Atomen aufdecken und kontrollieren können


Abb.: Verlauf des elektrischen Feldes zweier sehr kurzer Laserpulse (rot und blau), die dieselbe "Hülle" (schwarz) besitzen. Mit bisherigen Methoden waren nur die Puls-Einhüll-Enden messbar, der genaue Verlauf des elektrischen Feldes blieb bisher verborgen. Dieser konnte erst aus dem Spektrum der hohen Harmonischen (ganzzahligen Vielfachen) der Laserwellenlänge bestimmt werden.

Grafik: Max-Planck-Institut für Quantenoptik



Wissenschaftlern vom Max-Planck-Institut für Quantenoptik in Garching und der Technischen Universität Wien ist es gelungen, die Bewegung von Elektronen mit bisher nicht bekannter Genauigkeit zu kontrollieren und damit einzelne Lichtpulse im Attosekunden-Bereich zu erzeugen. Dies gelang, weil die Max-Planck-Forscher um Prof. Theodor Hänsch ihre Technik der Laser-Frequenzkämme für Präzisionsmessungen kombinierten mit den Erfahrungen von Prof. Ferenc Krausz und seinen Mitarbeitern am Wiener Institut für Photonik im Umgang mit ultraschnellen Lasern. Auf diese Weise konnten die Forscher erstmals nicht nur die Helligkeit sondern auch den genauen Verlauf des elektrischen Feldes in einem Laserpuls steuern. Die dadurch mögliche perfekte Kontrolle von Licht lässt völlig neue Anwendungen erwarten: Laser-Experimente im Femtosekundenbereich können Einblicke in die Bildung und das Schwingungsverhalten von Molekülen liefern, mit Attosekundenblitzen wird man in Zukunft sogar Vorgänge in der Elektronenhülle von Atomen verfolgen können (Nature, 6. Februar 2003). Das Zeitalter der Attophysik hat begonnen, die vom Fachmagazin "Science" zu den zehn wichtigsten wissenschaftlichen Errungenschaften des Jahres 2002 gezählt wird.



Seit Jahren liefern sich verschiedene Labors ein Wettrennen in der Erzeugung immer kürzerer Laser-Lichtblitze. Dabei ist man inzwischen bei Pulsdauern von nur noch wenigen Femtosekunden angekommen (1 Femtosekunde ist ein Millionstel einer milliardstel Sekunde). Wie mit einem Stroboskop (einem Blitzgerät zur Sichtbarmachung von schnellen periodischen Bewegungen) kann man mit wiederholten Laserblitzen die Bildung wie auch die Schwingung von Molekülen in Echtzeit beobachten. Und im Jahr 2002 gelangen die ersten Experimente mit Lichtblitzen im Attosekundenbereich - eine Attosekunde (10-18 s) ist der millionste Teil eines Millionstels einer millionstel Sekunde. Würde eine Sekunde unseres Lebens so lange dauern wie das Alter des Universums, wäre eine Attosekunde davon noch immer kürzer als eine Sekunde. In einer Attosekunde legt das Licht gerade einmal eine Entfernung zurück, die kaum größer ist als die Länge eines Wassermoleküls. Die natürlichen Schwingungen eines Moleküls vollziehen sich innerhalb von Zeiten, die in der Größenordnung von einigen zehntausend Attosekunden liegen; selbst die schnelle Bewegung von Elektronen um einen Atomkern wird in einigen Hundert bis einigen Tausend Attosekunden gemessen, und eine einzige Schwingung einer Welle von sichtbarem Licht dauert etwa 2000 Attosekunden.

Bei den jetzt erzeugten Attosekundenpulsen handelt es sich um Blitze weicher Röntgenstrahlung, die entstehen, wenn man intensive Lichtpulse eines Femtosekundenlasers in ein Gas fokussiert. Durch das starke elektrische Feld werden Elektronen aus den Gasatomen herausgerissen und beschleunigt. Da sich das Feld nach kurzer Zeit umkehrt, können solche Elektronen wieder zum Atom zurückkehren, wo sie die in der Zwischenzeit aufgesammelte Energie in einem Spektrum hoher Harmonischer Frequenzen abstrahlen. Allerdings war bisher nur die zeitabhängige Helligkeit oder "Einhüllende" der eingestrahlten Laserpulse messbar, etwa durch Autokorrelationsmessungen die einen Puls mit seiner eigenen zeitverzögerten Kopie vergleichen. Der Verlauf des elektrischen Feldes innerhalb der Puls-Einhüllenden war unbekannt und blieb bei allen bisherigen Experimenten dem Zufall überlassen. Wie bei einer stroboskopischen Blitzlampe mit Wackelkontakt entstanden so im Gas in unkontrollierter Weise manchmal Einzelblitze und manchmal Mehrfachblitze, und die Deutung der Messergebnisse erforderten das Gespür eines guten Detektivs.

Für die Erzeugung hoher Harmonischer und auch für andere nichtlineare Effekte in der Wechselwirkung kurzer Lichtblitze mit Materie ist die genaue Lage der optischen Zyklen innerhalb der Einhüllenden wichtig. Deshalb suchen Wissenschaftler seit einer Zeit nach Möglichkeiten, das elektrische Feld der Laserblitze zu kontrollieren. Diese Pulse kann man sich als ein oszillierendes elektromagnetisches Feld vorstellen, das in die eigene "Hülle" eingeschnürt ist und zwischen zwei Spiegeln in einem Laser-Resonator hin und her pulsiert. Wenn einer dieser Spiegel einen Teil des Lichtes durchlässt, tritt bei jeder Hin- und Herbewegung jeweils ein Teil des Laserpulses aus und bildet eine Pulskette. Doch obwohl sie auf identische Weise entstehen, sehen die Pulse einer solchen Kette nicht gleich aus. Die Feldschwingungen der so genannten optischen Trägerwelle sind ein wenig versetzt. Das liegt daran, dass die Trägerfrequenz im Allgemeinen nicht vereinbar ist mit der Pulswiederholfrequenz. Daher ergibt sich bei der Mittelung der Wirkung vieler Laserpulse ein unbekannter zufälliger Feldverlauf.

Bereits vor einigen Jahren fanden die Max-Planck-Quantenphysiker um Theodor Hänsch einen Weg, diesen Defekt bei einem Femtosekundenlaser sehr hoher Pulswiederholrate zu überwinden. Das Ziel war es, einen neuen Weg zu finden, um die Frequenz von Licht sehr genau zu messen. Die Erfindung, ein Laser-Frequenzkammgenerator, revolutioniert heute die Präzisionsspektroskopie und liefert erstmals ein praktisches "Uhrwerk" für zukünftige optische Atomuhren (Nature, 2002). Hierbei lernten die Forscher auch, wie man den Feldverlauf der Laserpulse stabilisieren kann. Inzwischen werden solche Stabilisierung von dem Martinsrieder Startup-Unternehmen Menlo Systems GmbH, einer Ausgründung des Max-Planck-Instituts für Quantenoptik, sogar kommerziell angeboten.

Der Wiener Gruppe um Ferenc Krausz wiederum gelang eine andere Innovation in der Lasertechnik. Mit vergleichbar exotischer Technik wie die Garchinger Forscher erzeugten sie hochenergetische und zugleich ultrakurze Laserpulse. Solche Pulse haben nach dem Fokussieren ein genügend hohes Feld, um in einem Gas auf dem oben beschriebenen Weg weiche Röntgenblitze von zuletzt nur noch 500 Attosekunden Dauer zu erzeugen.

Der Hochleistungslaser aus Wien wurde mit der Technik aus Garching stabilisiert, so dass jeder der Laserpulse mit einer Spitzenleistung von 100-Milliarden-Watt jetzt identisch ist. Das bedeutet, dass Elektronen, die im Fokus des Lasers von einem Atom weggerissen werden, identischen Wegen folgen und zu identischen Zeiten wieder zum Rumpf zurückkehren. Insbesondere wurde es damit erstmals möglich, die Lichtphase so einzustellen, dass innerhalb eines Laserblitzes kontrolliert und zu einem wohlbestimmten Zeitpunkt nur ein einzelner weicher Röntgenblitz entsteht. In diesem Falle verwandelt sich das Spektrum bei den höchsten Frequenzen in ein glattes Kontinuum, und die sonst vorhandenen Maxima bei harmonischen Frequenzen verschwinden.

Die jetzt mögliche präzise Kontrolle des elektrischen Feldes eines Lasers ermöglicht eine Reihe neuer Effekte und Anwendungen. Von besonderer Bedeutung ist die Erzeugung von Lichtpulsen im Attosekundenbereich, denn nur mit immer kürzeren Pulsen lassen sich immer kleinere und schnellere Vorgänge verfolgen. Geht es beim Femtosekundenlaser noch um die Bewegung der Kerne in Molekülen, lassen sich mit Attosekunden-Pulsen sogar Umstrukturierungen der Elektronenhülle beobachten und steuern. So kann man künftig zum Beispiel die Bewegung von Elektronen, die durch Photonen angeregt wurden, um ihr Mutter-Ion zeitaufgelöst verfolgen. Philipp H. Bucksbaum, University of Michigan, kommt in seinem "News and Views"-Artikel in der selben Nature-Ausgabe deshalb zu dem Ergebnis, die jetzt demonstrierten phasenstabilisierten Laserpulse markierten tatsächlich den Beginn einer Ära der Attophysik - das Studium physikalischer Prozesse auf der Attosekunden-Zeitskala.

Originalveröffentlichung:

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T. W. Hänsch & F. Krausz
Attosecond control of electronic processes

Weitere Informationen erhalten Sie von:

Prof. Theodor W. Hänsch
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
D-85748 Garching bei München
Tel.: +49-89-32905-702
Fax: +49-89-32905-312
E-Mail: t.w.haensch@mpq.mpg.de
Dr. Thomas Udem
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
D-85748 Garching bei München
Tel.: +49-89-32905-282
Fax: +49-89-32905-200
E-Mail: thomas.udem@mpq.mpg.de

Prof. Ferenc Krausz
Institut für Photonik
Technische Universität Wien
Gusshausstr. 27/387, A-1040 Wien, Österreich
Phone: + 43 1 58801 38711
Fax: + 43 1 58801 38799
Email: ferenc.krausz@tuwien.ac.at

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/
http://www.mpq.mpg.de/~haensch
http://info.tuwien.ac.at/photonik/home/Krausz/CV.htm

Weitere Berichte zu: Attosekunde Frequenz Laserpuls Lichtblitz

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics