Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sauerstoffatome im Elektronenmikroskop direkt sichtbar gemacht

07.02.2003


Scharfe Einblicke in Keramiken und Supraleiter


Strontiumtitanat (chemische Formel SrTiO3) im Elektronenmikroskop: Die Struktur (a, Sr = Strontium, Ti = Titan, O = Sauerstoff) ist mit einem "klassischen" Elektronenmikroskop (b) und im Vergleich dazu mit dem korrigierten Mikroskop (c) in einer Simulation abgebildet: Während vorher nur die schweren Strontiumatome erkennbar waren (b), sind jetzt auch die leichteren Sauerstoffatome direkt sichtbar (c). Auch Sauerstoffleerstellen können die Wissenschaftler erkennen (d).
Abbildung: Forschungszentrum Jülich


Ein silberfarbenes Teilstück im unteren Drittel des Elektronenmikroskops verrät den Prototypen mit der korrigierten Optik.
Foto: Forschungszentrum Jülich



Wissenschaftler des Forschungszentrums Jülich haben mit einem Elektronenmikroskop einzelne Sauerstoffatome in einer bestimmten Klasse von Materialien, den Perowskiten, direkt sichtbar gemacht. Ihr Erfolgsrezept: Sie haben eine Technik entwickelt, um die im Mikroskop unvermeidlichen Abbildungsfehler zu korrigieren. Diese Fehler führen in kommerziellen Geräten zwangsläufig zu verschwommenen Bildern, die keine einzelnen Sauerstoffatome mehr erkennen lassen. Die Ergebnisse der Jülicher Wissenschaftler sind in der neuesten Ausgabe der renommierten Zeitschrift "Science" veröffentlicht (Science, 7. Februar 2003).



Keramische Materialien auf der Basis von Oxiden mit Perowskitstruktur - zu ihnen gehören Barium- oder Strontiumtitanat - spielen eine große Rolle in der modernen Elektronik. Ihre Anwendung ist bereits heute weit verbreitet, zum Beispiel als Chip in Telefon- oder Geldkarten. Perowskite sind auch das Basismaterial für Hochtemperatursupraleiter und werden zukünftig zunehmend in der Mikroelektronik benötigt. Dort werden sie in dünnsten Schichten von nur einigen zehn bis einigen hundert Atomlagen eingesetzt. Eines der wichtigsten Probleme auf dem Weg dorthin ist die korrekte Einstellung des Sauerstoffgehaltes dieser Oxide, der dann über die große Zahl von Prozessschritten bei der Bauelementherstellung beibehalten werden muss. "Der Sauerstoffgehalt bestimmt kritisch die elektrischen Eigenschaften der perowskitischen Oxide", erläutert Prof. Knut Urban vom Jülicher Institut für Festkörperforschung das Problem. "Da bereits das Fehlen weniger Sauerstoffatome in den elektrisch aktiven Zonen der dünnen Schichten deren Funktion ernsthaft beeinträchtigt, müssen diese mit quasi-atomarer Präzision hergestellt werden."

Mit der Durchstrahlungselektronenmikroskopie lässt sich prinzipiell kontrollieren, ob diese atomare Präzision tatsächlich gegeben ist. Daher bemühen sich die Forscher seit Ende der Achtzigerjahre, die Sauerstoffatome im Mikroskop direkt sichtbar zu machen - bislang aber ohne Erfolg. Dabei ist das Grundprinzip der Elektronenmikroskopie einfach: Ein Elektronenstrahl durchdringt eine dünne Probe. Die austretenden Elektronen werden durch ein elektromagnetisches Linsensystem geführt und von diesem zu einem stark vergrößerten Bild zusammengestellt. Doch verschiedene Ursachen führen zu verzerrten Bildern, die keine einzelnen Sauerstoffatome mehr erkennen lassen.

Der Gruppe um Knut Urban ist hier nun ein Durchbruch gelungen: Die Wissenschaftler arbeiten mit dem bislang weltweit einzigen so genannten "aberrationskorrigierten" Transmissionselektronenmikroskop. Das Problem der "sphärischen Aberration" tritt bei Licht- wie bei Elektronenmikroskopen gleichermaßen auf: Licht- bzw. Elektronenstrahlen, die die Linsen des Mikroskops nahe dem Rand passieren, werden zu stark abgelenkt - das Bild verschwimmt. Doch mit speziell geformten magnetischen Linsen können die Forscher diesen bisher unvermeidlichen Abbildungsfehler korrigieren. Sie haben dem Elektronenmikroskop - bildlich gesprochen - eine Brille verordnet und so dessen Blick geschärft. Dieser Schritt erweist sich nun als außerordentlich erfolgreich: Er erlaubt nicht nur, erstmals den Sauerstoff atomar abzubilden, sondern man kann damit sogar den Sauerstoffgehalt in atomaren Dimensionen quantitativ messen. Ihre wegweisenden Ergebnisse haben Prof. Knut Urban und seine Mitarbeiter, der Mikroskopiespezialist Dr. Markus Lentzen und der Materialforscher Dr. Chun Lin Jia, in der neuesten Ausgabe von "Science" veröffentlicht.

Die neuartige Korrekturtechnik haben die Wissenschaftler des Forschungszentrums Jülich zusammen mit Kollegen vom European Molecular Biology Laboratory (EMBL) in Heidelberg und von der Technischen Universität Darmstadt in den Neunzigerjahren entwickelt - und damit den Prototyp einer völlig neuen Generation von Mikroskopen geschaffen: So werden im Laufe dieses Jahres weltweit die ersten kommerziellen aberrationskorrigierten Elektronenmikroskope ausgeliefert. Knut Urban ist überzeugt: "Dieses Verfahren wird auf vielen Gebieten der Materialforschung die klassische Art der hochauflösenden Elektronenmikroskopie ablösen."

Informationen:
Dr. Renée Dillinger, Wissenschaftsjournalistin
Forschungszentrum Jülich, 52425 Jülich
Tel. 02461 61-4771, Fax 02461 61-4666, E-Mail: r.dillinger@fz-juelich.de

Mechthild Hexamer, Leiterin Öffentlichkeitsarbeit, Pressesprecherin
Tel. 02461 61-4661, Fax 02461 61-4666, E-Mail: m.hexamer@fz-juelich.de


Peter Schäfer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/portal/angebote/pressemitteilungen

Weitere Berichte zu: Elektronenmikroskop Oxide Sauerstoffatom Sauerstoffgehalt

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte