Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sauerstoffatome im Elektronenmikroskop direkt sichtbar gemacht

07.02.2003


Scharfe Einblicke in Keramiken und Supraleiter


Strontiumtitanat (chemische Formel SrTiO3) im Elektronenmikroskop: Die Struktur (a, Sr = Strontium, Ti = Titan, O = Sauerstoff) ist mit einem "klassischen" Elektronenmikroskop (b) und im Vergleich dazu mit dem korrigierten Mikroskop (c) in einer Simulation abgebildet: Während vorher nur die schweren Strontiumatome erkennbar waren (b), sind jetzt auch die leichteren Sauerstoffatome direkt sichtbar (c). Auch Sauerstoffleerstellen können die Wissenschaftler erkennen (d).
Abbildung: Forschungszentrum Jülich


Ein silberfarbenes Teilstück im unteren Drittel des Elektronenmikroskops verrät den Prototypen mit der korrigierten Optik.
Foto: Forschungszentrum Jülich



Wissenschaftler des Forschungszentrums Jülich haben mit einem Elektronenmikroskop einzelne Sauerstoffatome in einer bestimmten Klasse von Materialien, den Perowskiten, direkt sichtbar gemacht. Ihr Erfolgsrezept: Sie haben eine Technik entwickelt, um die im Mikroskop unvermeidlichen Abbildungsfehler zu korrigieren. Diese Fehler führen in kommerziellen Geräten zwangsläufig zu verschwommenen Bildern, die keine einzelnen Sauerstoffatome mehr erkennen lassen. Die Ergebnisse der Jülicher Wissenschaftler sind in der neuesten Ausgabe der renommierten Zeitschrift "Science" veröffentlicht (Science, 7. Februar 2003).



Keramische Materialien auf der Basis von Oxiden mit Perowskitstruktur - zu ihnen gehören Barium- oder Strontiumtitanat - spielen eine große Rolle in der modernen Elektronik. Ihre Anwendung ist bereits heute weit verbreitet, zum Beispiel als Chip in Telefon- oder Geldkarten. Perowskite sind auch das Basismaterial für Hochtemperatursupraleiter und werden zukünftig zunehmend in der Mikroelektronik benötigt. Dort werden sie in dünnsten Schichten von nur einigen zehn bis einigen hundert Atomlagen eingesetzt. Eines der wichtigsten Probleme auf dem Weg dorthin ist die korrekte Einstellung des Sauerstoffgehaltes dieser Oxide, der dann über die große Zahl von Prozessschritten bei der Bauelementherstellung beibehalten werden muss. "Der Sauerstoffgehalt bestimmt kritisch die elektrischen Eigenschaften der perowskitischen Oxide", erläutert Prof. Knut Urban vom Jülicher Institut für Festkörperforschung das Problem. "Da bereits das Fehlen weniger Sauerstoffatome in den elektrisch aktiven Zonen der dünnen Schichten deren Funktion ernsthaft beeinträchtigt, müssen diese mit quasi-atomarer Präzision hergestellt werden."

Mit der Durchstrahlungselektronenmikroskopie lässt sich prinzipiell kontrollieren, ob diese atomare Präzision tatsächlich gegeben ist. Daher bemühen sich die Forscher seit Ende der Achtzigerjahre, die Sauerstoffatome im Mikroskop direkt sichtbar zu machen - bislang aber ohne Erfolg. Dabei ist das Grundprinzip der Elektronenmikroskopie einfach: Ein Elektronenstrahl durchdringt eine dünne Probe. Die austretenden Elektronen werden durch ein elektromagnetisches Linsensystem geführt und von diesem zu einem stark vergrößerten Bild zusammengestellt. Doch verschiedene Ursachen führen zu verzerrten Bildern, die keine einzelnen Sauerstoffatome mehr erkennen lassen.

Der Gruppe um Knut Urban ist hier nun ein Durchbruch gelungen: Die Wissenschaftler arbeiten mit dem bislang weltweit einzigen so genannten "aberrationskorrigierten" Transmissionselektronenmikroskop. Das Problem der "sphärischen Aberration" tritt bei Licht- wie bei Elektronenmikroskopen gleichermaßen auf: Licht- bzw. Elektronenstrahlen, die die Linsen des Mikroskops nahe dem Rand passieren, werden zu stark abgelenkt - das Bild verschwimmt. Doch mit speziell geformten magnetischen Linsen können die Forscher diesen bisher unvermeidlichen Abbildungsfehler korrigieren. Sie haben dem Elektronenmikroskop - bildlich gesprochen - eine Brille verordnet und so dessen Blick geschärft. Dieser Schritt erweist sich nun als außerordentlich erfolgreich: Er erlaubt nicht nur, erstmals den Sauerstoff atomar abzubilden, sondern man kann damit sogar den Sauerstoffgehalt in atomaren Dimensionen quantitativ messen. Ihre wegweisenden Ergebnisse haben Prof. Knut Urban und seine Mitarbeiter, der Mikroskopiespezialist Dr. Markus Lentzen und der Materialforscher Dr. Chun Lin Jia, in der neuesten Ausgabe von "Science" veröffentlicht.

Die neuartige Korrekturtechnik haben die Wissenschaftler des Forschungszentrums Jülich zusammen mit Kollegen vom European Molecular Biology Laboratory (EMBL) in Heidelberg und von der Technischen Universität Darmstadt in den Neunzigerjahren entwickelt - und damit den Prototyp einer völlig neuen Generation von Mikroskopen geschaffen: So werden im Laufe dieses Jahres weltweit die ersten kommerziellen aberrationskorrigierten Elektronenmikroskope ausgeliefert. Knut Urban ist überzeugt: "Dieses Verfahren wird auf vielen Gebieten der Materialforschung die klassische Art der hochauflösenden Elektronenmikroskopie ablösen."

Informationen:
Dr. Renée Dillinger, Wissenschaftsjournalistin
Forschungszentrum Jülich, 52425 Jülich
Tel. 02461 61-4771, Fax 02461 61-4666, E-Mail: r.dillinger@fz-juelich.de

Mechthild Hexamer, Leiterin Öffentlichkeitsarbeit, Pressesprecherin
Tel. 02461 61-4661, Fax 02461 61-4666, E-Mail: m.hexamer@fz-juelich.de


Peter Schäfer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/portal/angebote/pressemitteilungen

Weitere Berichte zu: Elektronenmikroskop Oxide Sauerstoffatom Sauerstoffgehalt

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten