Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochgeladene Ionen als Werkzeug für die Nanotechnologie

19.09.2000


Materialica, Werkstoff-Messe in München (25. bis 28. September 2000)

Eine neue, wirtschaftliche und langzeitstabile Quelle hochgeladener Ionen, die ohne supraleitende Magnetfeldtechnik auskommt

Ein Atom ist elektrisch neutral. Werden die Elektronen der Atomhülle entfernt, dann entstehen hochgeladene Ionen, die als Projektile beispielsweise in der Nanomechanik eingesetzt werden können. Dort erzeugen hochgeladene Projektilionen im Milliardstel-Meter-Bereich Strukturen unterschiedlichster Funktionalität. Diese Methode ist bekannt und wurde in Pilotexperimenten bereits demonstriert, jedoch ist die Erzeugung höchstgeladener Ionen mit großem finanziellen und technischen Aufwand verbunden. Denn die hochgeladenen Ionen konnten bisher nur in Verbindung mit kryogener Technik erzeugt werden, das heißt mit supraleitender Magnetfeldtechnik, für die flüssiges Helium erforderlich ist.

Dr. Günter Zschornack und seine Arbeitsgruppe vom Institut für Kern- und Teilchenphysik der Technischen Universität Dresden stellt vom 25. bis 28. September 2000 auf der "Materialica" nun eine neue Technik vor, mit der hochgeladene Ionen kostengünstig und langzeitstabil bei Zimmertemperatur konkurrenzlos günstig erzeugt werden können. "Unsere Ionenquelle ist mit einer Länge von rund 30 Zentimetern und einem Gewicht von etwa 10 Kilogramm dazu relativ klein", berichtet Dr. Günter Zschornack, "Im Vergleich dazu weisen die bisherigen Quellen wesentlich größere Abmessungen auf. Mit unserer neuen, zum Patent angemeldeten Technik wird es gegenüber anderen bekannten Quellen möglich, hochgeladene Ionen in größerem Maßstab in der Forschung und Technologie extrem wirtschaftlich einzusetzen."

Die gemeinsam mit russischen Wissenschaftlern und der Dresdner Firma Leybold Systems + Service GmbH entwickelte DEBIT (Dresden Electron Beam Ion Trap), gefördert vom EFRE-Fond der Europäischen Union und dem Freistaat Sachsen, kann hochgeladene Ionen über das gesamte Periodensystem erzeugen - beispielsweise Fe25+, Co26+, Kr 34+, Xe49+ und Hg70+. Die DEBIT ist nicht nur eine neuartige Quelle für hochgeladene Projektilionen, sondern erzeugt effizient aus hochgeladenen Ionen emittierte charakteristische Röntgenstrahlung, VUV-Strahlung und sichtbares Licht. Eingesetzt werden kann diese Anlage in der Plasmaphysik, Atomphysik, Strahlenbiologie, Materialforschung, Metrologie, der Datengewinnung für die Astrophysik und die gesteuerte Kernfusion sowie bei technischen Anwendungen wie der Nanostrukturierung, Potentialsputtern, Ionenstrahllithographie, Informationsspeicherung und Projektionsröntgen-mikroskopie.

Informationen:
Institut für Kern- und Teilchenphysik, Dr. GünterZschornack, Telefon (03 501) 53 00 50, Fax (03 501) 53 00 11, E-Mail: zschorn@physik.phy.tu-dresden.de


oder vom 25. bis 28. September 2000 auf der Werkstoff-Messe "Materialica" in München, Halle B01, Stand B1.513/722, Gemeinschaftsstand "Forschung für die Zukunft", Telefon (0 89) 9 49 49-7 02, Fax (0 89) 9 49 49-7 03.

Dresden, September 2000
Birte Urban, Telefon (03 51) 4 63-69 09

Birgit Berg |

Weitere Berichte zu: Ion Magnetfeldtechnik Teilchenphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie