Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Computer als Nanolabor

06.10.2000


Simulation eines Methanmoleküls, das an ein

reaktives Zentrum in einem Zeolithkatalysator angedockt

hat.


Bei der Ernennung: (v.l.n.r.) Prof. Dr. V.

Kempter, D. Wieczorek, Prof. Dr. D. Mayer, Prof. Dr. P. Blöchl,

Prof. Dr.-Ing. P. Dietz, Prof. Dr. D. Kaufmann, Prof. Dr. W.

Schade.


Der Rektor der TU Clausthal, Professor Dr.-Ing. Peter Dietz, ernannte Dr. rer.nat. habil. Peter E. Blöchl, vom IBM Forschungszentrum Zürich in Rüschlikon, Schweiz, kommend, zum C4-Professor für Theoretische Physik.

Geboren 1959 in Frankfurt am Main, studierte Peter Blöchl Physik an der Universität Karlsruhe (1978 - 84) und promovierte 1989 an der Universität Stuttgart als Externer mit einer Arbeit über "Kräfte, Gesamtenergien und Metall-Halbleitergrenzflächen". 1997 habilitierte sich Peter Blöchl an der TU Wien mit einem neuen Modell und einer neuen Berechnungsmethodik der Bindungskräfte zwischen Atomen.

Seine wissenschaftliche Heimat waren die Max-Planck-Institute für Metall- und Festkörperforschung in Stuttgart, sein Doktorvater Professor Dr. Ole K. Andersen. Die Vorgänge chemischer Bindung an Metall-Halbleitergrenzflächen können mit Hilfe von Computersimulationen studiert werden. Der Computer wird im Nanobereich, in der Größenordnung mehrerer hundert Atome, d.h. räumlich im Millionstel Millimeterbereich, dort, wo keine realen Experimente möglich sind, zum virtuellen Labor. Berechnungen ersetzen das reale Experiment, grenzen den Suchraum erfolgversprechender interessanter neuer Materialien ein. Das ist die Aufgabenstellung dieses Arbeitsgebietes der theoretischen Physik.

Die "Projector augmented wave method", 1995 in Physical Review publiziert, erlaubt eine wesentliche Steigerung der Genauigkeit, mit welcher Bindungsenergien zwischen Atomen simuliert werden können. Defekte in dünnen Siliziumoxidschichten, welche die Lebensdauer von Halbleiterbauelementen begrenzen, können genauso untersucht werden wie Katalysatoren, welche gezielt rechts oder linkshändige Moleküle erzeugen. Weil unser Körper selbst eine bestimmte Händigkeit besitzt, können Moleküle je nach Händigkeit heilende oder giftige Wirkung entfalten. Als dieser Sachverhalt noch nicht bekannt war, verursachte die Contergansubstanz, welche - ohne es zu ahnen - in rechts- und linkshändiger Form hergestellt wurde, in der "falschen" Händigkeit dramatische Geburtsdefekte. Deshalb sind Katalysatoren, welche die Händigkeit gezielt aufprägen, von besonderer Bedeutung für die Herstellung von Medikamenten. Ehrenvolle Erwähnung hat eine Arbeit über Zeolithe in dem Nobelvortrag von Walter Kohn (Chemie 1998) gefunden. Zeolithkatalysatoren mit ihrer mikroporösen Kristallstruktur werden hauptsächlich in der Erdölindustrie eingesetzt. Simulationen konnten die Wirkungsweise aktivierter Fragmente des Gastkristalls mit eindringenden Molekülen aufklären.

Mit solchen Methoden wird, im Prinzip, der Werkstoff mit all seinen Eigenschaften verständlich. Die "Bausteine" der Simulation sind die Atomkerne und die Elektronen. In der Simulation werden aus den Positionen und Geschwindigkeiten der Atomkerne, der Elektronenverteilung, die Positionen vorhergesagt, welche die Atomkerne etwa 0, 2 Femtosekunden (10 hoch - 15) später einnehmen. Diese Berechnungen werden etwa 5000 Mal wiederholt, bis schließlich die "Bahnkurven", die Trajektorien für etwa zehn Picosekunden ( 10 hoch -12)im Rechner "nachgezeichnet" sind.

Derartige Methoden werden in Zukunft, so die begründete Hoffnung, wesentlich dazu beitragen, neue Werkstoffe so planvoll zu entwickeln, wie Ingenieure dies derzeit mit Maschinen tun. Die Gesamtheit der chemischen Elemente stellt die prinzipiell möglichen "Konstruktionselemente" dar. Wer ihre möglichen Bindungen im Aufbau zu Kristallen kennt, kann die Gesamtheit aller denkbaren möglichen Werkstoffe verwirklichen und "konstruieren". Der Computer ist deshalb ein Nano-Labor, welches Vorgänge bis in den Femtosekundenbereich und so bis zu einem Bruchteil eines Atomabstandes auflöst. Mit Hilfe moderner Parallelrechner lassen sich Vorgänge bis zu etwa 10 Picosekunden und Proben bis zu einigen Nanometern darstellen. Mit dem atemberaubenden Wachstum der verfügbaren Rechenleistung und der rapiden Entwicklung der Simulationsmethoden, werden solche Simulationen in Zukunft erheblich an Bedeutung in der Technologie gewinnen.

Diese Möglichkeiten zeigen sich heute am Horizont möglicher Technik (des Jahres 2020?). Die Arbeiten von Professor Dr. Peter E. Blöchl, sind ein wesentlicher Teil, die "Landkarte" zu dieser "Expedition" zu legen.

Die IBM, bei welcher Blöchl nach einem fast zweijährigen Forschungsaufenthalt im IBM-Forschungslaboratorium in Yorktown-Heights in den USA, von 1990 - 2000 in Rüschlikon tätig war, zeichnete ihn für acht Erfindungen mit zwei Preisen aus. Ein weiterer IBM-Preis galt herausragenden technischen Leistungen auf dem Gebiet der Entwicklung und Validierung neuer Simulationsmethoden. Die zwanzigste internationale Konferenz der Halbleiterphysik 1990 in Thessaloniki, Griechenland, erkannte seinem Vortrag den "Young Author Best Paper Award" zu.

Bildquelle: Abgedruckt mit freundlicher Genehmigung von Ernst Nusterer, Peter E. Blöchl und Karlheinz Schwarz, aus Angewandte Chemie, Vol. 108, Nr. 2 (1996). Copyright Wiley-VCH Verlag GmbH, D-69451 Weinheim, 1996.

Jochen Brinkmann | idw

Weitere Berichte zu: Atom Atomkern Molekül Simulation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungsnachrichten

Nachwuchswissenschaftler blicken in die Quantenwelt

28.03.2017 | Seminare Workshops

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie