Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Computer als Nanolabor

06.10.2000


Simulation eines Methanmoleküls, das an ein

reaktives Zentrum in einem Zeolithkatalysator angedockt

hat.


Bei der Ernennung: (v.l.n.r.) Prof. Dr. V.

Kempter, D. Wieczorek, Prof. Dr. D. Mayer, Prof. Dr. P. Blöchl,

Prof. Dr.-Ing. P. Dietz, Prof. Dr. D. Kaufmann, Prof. Dr. W.

Schade.


Der Rektor der TU Clausthal, Professor Dr.-Ing. Peter Dietz, ernannte Dr. rer.nat. habil. Peter E. Blöchl, vom IBM Forschungszentrum Zürich in Rüschlikon, Schweiz, kommend, zum C4-Professor für Theoretische Physik.

Geboren 1959 in Frankfurt am Main, studierte Peter Blöchl Physik an der Universität Karlsruhe (1978 - 84) und promovierte 1989 an der Universität Stuttgart als Externer mit einer Arbeit über "Kräfte, Gesamtenergien und Metall-Halbleitergrenzflächen". 1997 habilitierte sich Peter Blöchl an der TU Wien mit einem neuen Modell und einer neuen Berechnungsmethodik der Bindungskräfte zwischen Atomen.

Seine wissenschaftliche Heimat waren die Max-Planck-Institute für Metall- und Festkörperforschung in Stuttgart, sein Doktorvater Professor Dr. Ole K. Andersen. Die Vorgänge chemischer Bindung an Metall-Halbleitergrenzflächen können mit Hilfe von Computersimulationen studiert werden. Der Computer wird im Nanobereich, in der Größenordnung mehrerer hundert Atome, d.h. räumlich im Millionstel Millimeterbereich, dort, wo keine realen Experimente möglich sind, zum virtuellen Labor. Berechnungen ersetzen das reale Experiment, grenzen den Suchraum erfolgversprechender interessanter neuer Materialien ein. Das ist die Aufgabenstellung dieses Arbeitsgebietes der theoretischen Physik.

Die "Projector augmented wave method", 1995 in Physical Review publiziert, erlaubt eine wesentliche Steigerung der Genauigkeit, mit welcher Bindungsenergien zwischen Atomen simuliert werden können. Defekte in dünnen Siliziumoxidschichten, welche die Lebensdauer von Halbleiterbauelementen begrenzen, können genauso untersucht werden wie Katalysatoren, welche gezielt rechts oder linkshändige Moleküle erzeugen. Weil unser Körper selbst eine bestimmte Händigkeit besitzt, können Moleküle je nach Händigkeit heilende oder giftige Wirkung entfalten. Als dieser Sachverhalt noch nicht bekannt war, verursachte die Contergansubstanz, welche - ohne es zu ahnen - in rechts- und linkshändiger Form hergestellt wurde, in der "falschen" Händigkeit dramatische Geburtsdefekte. Deshalb sind Katalysatoren, welche die Händigkeit gezielt aufprägen, von besonderer Bedeutung für die Herstellung von Medikamenten. Ehrenvolle Erwähnung hat eine Arbeit über Zeolithe in dem Nobelvortrag von Walter Kohn (Chemie 1998) gefunden. Zeolithkatalysatoren mit ihrer mikroporösen Kristallstruktur werden hauptsächlich in der Erdölindustrie eingesetzt. Simulationen konnten die Wirkungsweise aktivierter Fragmente des Gastkristalls mit eindringenden Molekülen aufklären.

Mit solchen Methoden wird, im Prinzip, der Werkstoff mit all seinen Eigenschaften verständlich. Die "Bausteine" der Simulation sind die Atomkerne und die Elektronen. In der Simulation werden aus den Positionen und Geschwindigkeiten der Atomkerne, der Elektronenverteilung, die Positionen vorhergesagt, welche die Atomkerne etwa 0, 2 Femtosekunden (10 hoch - 15) später einnehmen. Diese Berechnungen werden etwa 5000 Mal wiederholt, bis schließlich die "Bahnkurven", die Trajektorien für etwa zehn Picosekunden ( 10 hoch -12)im Rechner "nachgezeichnet" sind.

Derartige Methoden werden in Zukunft, so die begründete Hoffnung, wesentlich dazu beitragen, neue Werkstoffe so planvoll zu entwickeln, wie Ingenieure dies derzeit mit Maschinen tun. Die Gesamtheit der chemischen Elemente stellt die prinzipiell möglichen "Konstruktionselemente" dar. Wer ihre möglichen Bindungen im Aufbau zu Kristallen kennt, kann die Gesamtheit aller denkbaren möglichen Werkstoffe verwirklichen und "konstruieren". Der Computer ist deshalb ein Nano-Labor, welches Vorgänge bis in den Femtosekundenbereich und so bis zu einem Bruchteil eines Atomabstandes auflöst. Mit Hilfe moderner Parallelrechner lassen sich Vorgänge bis zu etwa 10 Picosekunden und Proben bis zu einigen Nanometern darstellen. Mit dem atemberaubenden Wachstum der verfügbaren Rechenleistung und der rapiden Entwicklung der Simulationsmethoden, werden solche Simulationen in Zukunft erheblich an Bedeutung in der Technologie gewinnen.

Diese Möglichkeiten zeigen sich heute am Horizont möglicher Technik (des Jahres 2020?). Die Arbeiten von Professor Dr. Peter E. Blöchl, sind ein wesentlicher Teil, die "Landkarte" zu dieser "Expedition" zu legen.

Die IBM, bei welcher Blöchl nach einem fast zweijährigen Forschungsaufenthalt im IBM-Forschungslaboratorium in Yorktown-Heights in den USA, von 1990 - 2000 in Rüschlikon tätig war, zeichnete ihn für acht Erfindungen mit zwei Preisen aus. Ein weiterer IBM-Preis galt herausragenden technischen Leistungen auf dem Gebiet der Entwicklung und Validierung neuer Simulationsmethoden. Die zwanzigste internationale Konferenz der Halbleiterphysik 1990 in Thessaloniki, Griechenland, erkannte seinem Vortrag den "Young Author Best Paper Award" zu.

Bildquelle: Abgedruckt mit freundlicher Genehmigung von Ernst Nusterer, Peter E. Blöchl und Karlheinz Schwarz, aus Angewandte Chemie, Vol. 108, Nr. 2 (1996). Copyright Wiley-VCH Verlag GmbH, D-69451 Weinheim, 1996.

Jochen Brinkmann | idw

Weitere Berichte zu: Atom Atomkern Molekül Simulation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics