Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie kreiselnde Moleküle einzelne Metallatome einfangen und chemisch binden

17.12.2002


Koordinationsverbindungen, das heißt Verbindungen aus einem zentralem Übergangsmetallatom, um das sich ein Satz molekularer Liganden schart, sind heute von großem wissenschaftlichen Interesse. Sie spielen bei zahlreichen biologischen Prozessen eine wichtige Rolle und dienen der Erzeugung von neuartigen supramolekularen Werkstoffen. Jetzt ist es einer Forschergruppe am Stuttgarter Max-Planck-Institut für Festkörperforschung erstmals gelungen, die Bildung und das Verhalten einzelner Metall-Molekül-Komplexe direkt zu beobachten und zu steuern (Angewandte Chemie, 16. Dezember 2002 und Journal of the American Chemical Society, 2002).



Mit der Entwicklung der Rastertunnelmikroskopie (engl. scanning tunneling microscopy - STM) in den 1980er Jahren setzte eine radikale Änderung unseres Verhältnisses zur atomaren und molekularen Welt ein. Heute werden mit dieser Technik Moleküle und chemische Prozesse in situ - auf einer Oberfläche - im atomaren Maßstab direkt verfolgt. Darüber hinaus ist es möglich, auch die Translations- und Rotationsbewegungen einzelner Moleküle zu verfolgen. In jüngster Zeit gelang sogar die detaillierte Analyse von supramolekularen Verbindungen, in denen sich verschiedene molekulare Bausteine zu komplexen Einheiten organisieren. Grundlage all dieser komplexen Strukturen sind so genannte nichtkovalente chemische Bindungen, die auf anziehenden zwischenmolekularen Kräften beruhen, wie die Wasserstoff-Brückenbindung oder Metall-Liganden-Wechsel-wirkungen.

... mehr zu:
»Kupfer-Atom »Metallatom


Die Max-Planck-Forscher brachten nun einen vergleichsweise einfachen molekularen Baustein - 1,3,5-Benzoltricarbonäure (engl. trimesic acid bzw. tma) - auf ein Kupfersubstrat, um direkte Einblicke in die Entstehung von Koordinationsverbindungen an einer Oberfläche zu erhalten. Auf dem Substrat sind bei Raumtemperatur hochmobile einzelne Kupfer-Atome vorhanden, die mit den reaktiven tma-Liganden wechselwirken können. Mit Hilfe eines Rastertunnelmikroskops gelang es den Wissenschaftlern, die Bewegungen einzelner Moleküle zu verfolgen und zu beobachten, wie die rotierenden tma-Moleküle für einzelne Kupfer-Atome wie eine dynamische "Atomfalle" wirken (vgl. Zeitrafferfilme unter [1]). Die Forschern konnten auf diese Weise direkt verfolgen, wie sich kleeblattförmige Komplexe (Cu(tma)4) aus einem Kupfer-Atom und vier tma-Molekülen bilden und auch wieder zerfallen. Durch die Beobachtung einzelner Molekülkomplexe konnten sie belegen, dass die Lebensdauer dieser Verbindungen entscheidend von der jeweiligen lokalen chemischen Umgebung abhängt.

In einem zweiten Experiment gelang es den Forschern, einen verwandten kleeblattförmigen Komplex aus Eisenatomen und tma-Molekülen gezielt zu synthetisieren, indem sie die beiden Reaktanten unter geeigneten Bedingungen wiederum auf ein Kupfersubstrat aufbrachten. Da in diesem Fall zwischen dem zentralen Eisen-Atom und den Carbonsäure-Liganden eine stärkere Wechselwirkung besteht, besitzt dieser Komplex eine größere thermische Stabilität, deutlich kürzere Bindungsabstände und eine andere Geometrie. Bei einer detaillierten Analyse der Bindungen stellten die Stuttgarter Forscher fest, dass dieser metallorganische Komplex in zwei spiegelsymmetrischen Konfigurationen vorliegt, ähnlich der Spiegelsymmetrie zwischen unserer linken und rechten Hand. Dieses Phänomen wird in der Chemie als Chiralität (von gr. χειρ : Hand) bezeichnet. Chirale Moleküle spielen insbesondere in der Biologie und Pharmakologie eine wichtige Rolle. Im vorliegenden Fall sind die gebildeten Fe(tma)4-Komplexe in zwei Dimensionen chiral, wobei das Eisen-Atom das so genannte chirale Zentrum bildet.

Die gezielte Verknüpfung von Metallatomen mit organischen Molekülen auf Oberflächen eröffnet vielfältige Perspektiven für Forschung und Anwendung. Zur Zeit arbeiten die Stuttgarter Forscher an der kontrollierten Synthese von räumlich geordneten Netzwerken von Eisen und organischen Liganden. Aufgrund der magnetischen Eigenschaften der eingebundenen Eisenatome sind diese Netzwerke beispielsweise auch von großem Interesse für magnetische Speichertechnologien.

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-stuttgart.mpg.de/kern/Res_act/supmat_2.html
http://www.mpi-stuttgart.mpg.de/kern/Res_act/supmat_2_2.html

Weitere Berichte zu: Kupfer-Atom Metallatom

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik