Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wirbelsturm am Plasmarand

10.12.2002


Umgebautes Kernfusionsexperiment TEXTOR wieder in Betrieb



Energie nach dem Vorbild der Sonne zu erzeugen, ist das Ziel der Kernfusionsforschung. Bei der Fusion verschmelzen schwere Wasserstoffkerne unter Freisetzung von sehr großen Energiemengen. Auf der Erde sind dafür Temperaturen von etwa 100 Millionen Grad nötig. Mit der Einweihung des Dynamischen Ergodischen Divertors (DED) steht den Fusionsforschern am Forschungszentrum Jülich ab 6. Dezember ein weltweit einzigartiges Experiment zur Verfügung, um den Kernfusionsprozess zu steuern. Eingebaut in TEXTOR, soll es grundlegende Fragen der Wechselwirkung vieler Millionen Grad heißer Fusionsplasmen mit den umgebenden Wänden beantworten. Eingebunden ist das DED-Experiment in die weltweiten Aktivitäten zum Bau des nächsten großen Fusionsreaktors ITER.

... mehr zu:
»Divertor »Kernfusion »Plasmarand »TEXTOR


Das Treibhausgas Kohlendioxid zu reduzieren, ist zentrales Thema dieses Jahrhunderts. Wohlstand und Bevölkerung nehmen weltweit zu. Der Energiebedarf steigt. Um langfristig die Energieversorgung zu sichern, müssen zusätzliche Energieformen erschlossen werden. Eine solche Energiequelle zur nachhaltigen und Kohlendioxid freien Stromversorgung stellt die kontrollierte Kernfusion dar: Ähnlich wie in der Sonne wird bei Temperaturen von etwa 100 Millionen Grad Energie aus der Verschmelzung von schwerem Wasserstoff gewonnen. Die Brennstoffe der Kernfusion stehen praktisch unbegrenzt zur Verfügung.

Die Fusionsforschung befindet sich derzeit auf dem Weg in eine neue Ära. Zum ersten Mal soll ein "brennendes" Plasma erzeugt werden, aus dem Energie mehr gewonnen wird, als zum Heizen nötig ist. Die Herausforderung besteht darin, den Wirkungsgrad zu steigern und den Vorgang dauerhaft zu beherrschen. Das von Europa, Japan und Russland gemeinsam vorbereitete Experiment ITER soll dabei der letzte Schritt vor dem Bau des ersten, kontinuierlich arbeitenden Fusionskraftwerks namens DEMO sein. DEMO wird etwa ein Gigawatt elektrische Leistung ins Netz speisen. Dies entspricht der Leistung eines heutigen Großkraftwerks. "Bereits in 20 Jahren könnte mit dem Bau eines ersten Strom liefernden Kraftwerks begonnen werden", schätzen Prof. Ulrich Samm und Dr. Robert Wolf, die beiden Leiter des Instituts für Plasmaphysik in Jülich.

Mit dem Dynamischen Ergodischen Divertor wird am Forschungszentrum Jülich ein wichtiger Schritt in diese Richtung getan: Erfolgreich erprobt wurde der Ergodische Divertor in Frankreich. Durch die Einführung einer "dynamischen" Komponente haben die Jülicher Forscher die Idee entscheidend verbessert und erstmals experimentell realisiert. Im Detail sieht dies wie folgt aus: Die Verschmelzung von schwerem Wasserstoff findet in einem viele Millionen Grad heißen Plasma statt. In diesem Plasma gibt es keine vollständigen Atome mehr, Atomkerne und Elektronen bewegen sich statt dessen getrennt voneinander. Prallen Kerne aufeinander, verschmelzen sie unter bestimmten Bedingungen zu Heliumkernen und es wird mehr Energie gewonnen, als zum Heizen benötigt wird. Dazu muss das Plasma so gut wie möglich in einen ringförmigen Magnetkäfig eingeschlossen werden. Die Magnetfeldlinien werden hierzu wie ein Mantel um das Ringplasma gewickelt.

Am Plasmarand hat der gute magnetische Einschluss jedoch Nachteile. Dort, wo die Magnetfeldlinien auf die Reaktorwand treffen, kommt es lokal zu einer viel zu hohen Aufheizung und im schlimmsten Fall zur Schädigung des Wandmaterials. Genau an dieser Stelle setzt der DED an: Er besteht aus 18 einzelnen Spulen, die auf der Innenseite des Reaktors angebracht sind. Fließt durch die Spulen Wechselstrom, baut sich ein rotierendes (dynamisches) magnetisches Störfeld auf. Zusätzlich werden die geschlossenen magnetischen Feldlinien durch Verwirbelung am Plasmarand aufgebrochen (Ergodisierung). Diese Veränderung des Magnetfelds führt dazu, dass der Wärmefluss aus dem heißen Kernplasma auf große Wandbereiche verteilt wird. Lokale Überhitzungen werden vermieden. Ein zusätzlicher Effekt der Magnetfeldverwirbelung: Verunreinigungen gelangen nicht ins Innere der heißen Zone, wodurch sich die Qualität und Lebensdauer des Plasmas erhöhen.

Das Institut für Plasmaphysik (IPP) am Forschungszentrum Jülich koordiniert europaweit die Aktivitäten zum Studium der Wechselwirkung von heißen Wasserstoffplasmen mit der Reaktorwand. Im Rahmen eines EURATOM-Assoziationsvertrags führt das Institut ein Forschungs- und Entwicklungsprogramm zu ausgewählten Problemen der Hochtemperatur-Plasmaphysik und der Kernfusion durch. Hierzu betreibt das IPP gemeinsam mit seinen belgischen und niederländischen Partnern im "Trilateralen Euregio Cluster" (TEC) das Fusionsexperiment TEXTOR als zentrales Großforschungsgerät.

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de/aktuelles/pressemitteilungen.html
http://www.fz-juelich.de/ipp
http://www.itereu.de

Weitere Berichte zu: Divertor Kernfusion Plasmarand TEXTOR

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie