Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jenaer Physiker schmelzen ohne Hitze

28.02.2001


Den Jenaern Physikern Prof. Dr. Eckhart Förster und Dr. Ingo Uschmann ist es gelungen, die Oberfläche eines Kristalls allein durch die elektromagnetische Energie eines extrem schnell gepulsten Lasers zu schmelzen, noch bevor Hitze einwirken konnte.

Eine weniger als einen tausendstel Millimeter dicke Schicht des Kristalls schmolz unter dem Laserstrahl, bevor sie sich erhitzen konnte. "Bisher wusste man nicht eindeutig, dass es so etwas wie eine solche nichtthermische, also nicht durch Temperaturerhöhung verursachte Schmelze überhaupt gibt", hebt Förster hervor. Die Ergebnisse der Arbeiten werden in der morgigen Ausgabe des renommierten Wissenschaftsmagazins "Nature" erscheinen.


Förster, Leiter der Abteilung Röntgenoptik der Friedrich-Schiller-Universität, arbeitet mit seinem Team bereits seit 15 Jahren mit Lasern, die extrem kurze Impulse aussenden. Inzwischen haben die Jenaer Physiker sich bis zu Pulsdauern von 100 bis 200 Femtosekunden heruntergearbeitet - diese Zeit ist kürzer als der Billionste Teil einer Sekunde (10-12). Dass ein so kurzer Impuls bereits ausreicht, um die Atome an der Kristalloberfläche in Bewegung, und damit das Material zum Schmelzen zu bringen, überraschte selbst die Experten. Eine Hitzentwicklung findet erst nach etwa zehn Picosekunden, also nach zehn Billionstel Sekunden, statt.

Um die nichtthermische Schmelze überhaupt sichtbar machen zu können, griffen die Physiker zu einem Trick: Einen Teil des Laserstrahls wandelten sie zum Beobachten des Effektes in Röntgenstrahlen um. Diese ließen sie auf den selben Kristall treffen, auf den sie den anderen Teil des Lasers direkt gelenkt hatten, wobei die Auftreffzeiten einstellbar sind. Der zweite Laserstrahl veränderte durch seine hohe Leistung die Struktur der Kristalloberfläche. "Mit Hilfe der Röntgenstrahlen können wir die Bewegung der Atome sichtbar machen, während mit normalem Licht nur die Darstellung optischer Veränderungen möglich ist", beschreibt Ingo Uschmann die Vorteile des Verfahrens.

Herzstücke des Versuchsaufbaus sind die dabei verwendeten gebogenen Kristalle, mit denen die Röntgenstrahlung auf den zu schmelzenden Kristall geleitet wird. Für das jetzt in "Nature" beschriebene Experiment verwendeten die Jenaer Wissenschaftler einen Quarzkristall, aus dem sie in mühevoller Handarbeit einen maßgeschneiderten Röntgenspiegel angefertigt hatten. Dazu brachten sie eine 0,07 mm dünne Scheibe des Kristalls auf einen gebogenenTräger aus Messing auf. Der Krümmungsradius musste dabei exakt stimmen, um das erwünschte Versuchsergebniss zu erzielen. "Wir sind weltweit die einzige Gruppe, die solche Kristall-Werkstücke mit der erforderlichen Präzision herstellen kann", betont Eckhart Förster.

Interessant sind ihre Arbeiten vor allem für viele andere Forschungsgebiete in der Chemie, der Physik und auch der Strukturbiologie: "Mit derartig kurz gepulsten Laser- und Röntgenstrahlen kann man quasi in Zeitlupe ultraschnelle Prozesse in der Natur beobachten", so Eckhart Förster. Eine technische Anwendung ihrer Ergebnisse ist nach Ansicht von Förster und Uschmann noch nicht unmittelbar absehbar, aber zum Beispiel in der Halbleitertechnologie möglich.

Aufgrund ihrer langjährigen Erfahrung sind die Jenaer Physiker mit ihrer Gruppe international gefragte Partner. Die Versuche zur vorliegenden Veröffentlichung haben sie mit französischen und dänischen Kollegen an einer Großforschungsanlage im französischen Palaiseau durchgeführt. Inzwischen verfügt aber das Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität im Labor von Prof. Dr. Roland Sauerbrey, Dr. Thomas Feurer und Andreas Morack selbst über die entsprechende technische Ausstattung. "Wir erreichen kürzere Impulszeiten als Großforschungseinrichtungen", sagt Förster, "damit bestimmen wir die Weltspitze." Er und seine Kollegen sind in zahlreichen Netzwerken aktiv, so in den EU-geförderten Programmen FAMTO ("Ultra Fast Atomic Movie Tools") und XPOSE ("X-ray Probing of Structural Evolution of Matter").

Ansprechpartner:
Prof. Dr. Eckhart Förster
Forschungsgruppe Röntgenoptik


Tel.: 03641/ 9 47261
Fax: 9 47262
E-Mail: eckhart.foerster@uni-jena.de
Sie finden den Artikel unterhttp://www.nature.com

Susanne Liedtke
Friedrich Schiller Universität
Referat Öffentlichkeitsarbeit
Fürstengraben 1
07743 Jena
Tel: 03641/ 93 10 40
Fax: 03641/ 93 10 42
E-Mail: Susanne.Liedtke@uni-jena.de

Weitere Informationen finden Sie im WWW:

Susanne Liedtke | idw

Weitere Berichte zu: Kristall Laserstrahl Röntgenstrahl

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Stabile Quantenbits
08.12.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

11.12.2017 | Verfahrenstechnologie

Jenaer Wissenschaftler für Prostatakrebs-Forschung ausgezeichnet

11.12.2017 | Förderungen Preise

Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt

11.12.2017 | Biowissenschaften Chemie