Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jenaer Physiker schmelzen ohne Hitze

28.02.2001


Den Jenaern Physikern Prof. Dr. Eckhart Förster und Dr. Ingo Uschmann ist es gelungen, die Oberfläche eines Kristalls allein durch die elektromagnetische Energie eines extrem schnell gepulsten Lasers zu schmelzen, noch bevor Hitze einwirken konnte.

Eine weniger als einen tausendstel Millimeter dicke Schicht des Kristalls schmolz unter dem Laserstrahl, bevor sie sich erhitzen konnte. "Bisher wusste man nicht eindeutig, dass es so etwas wie eine solche nichtthermische, also nicht durch Temperaturerhöhung verursachte Schmelze überhaupt gibt", hebt Förster hervor. Die Ergebnisse der Arbeiten werden in der morgigen Ausgabe des renommierten Wissenschaftsmagazins "Nature" erscheinen.


Förster, Leiter der Abteilung Röntgenoptik der Friedrich-Schiller-Universität, arbeitet mit seinem Team bereits seit 15 Jahren mit Lasern, die extrem kurze Impulse aussenden. Inzwischen haben die Jenaer Physiker sich bis zu Pulsdauern von 100 bis 200 Femtosekunden heruntergearbeitet - diese Zeit ist kürzer als der Billionste Teil einer Sekunde (10-12). Dass ein so kurzer Impuls bereits ausreicht, um die Atome an der Kristalloberfläche in Bewegung, und damit das Material zum Schmelzen zu bringen, überraschte selbst die Experten. Eine Hitzentwicklung findet erst nach etwa zehn Picosekunden, also nach zehn Billionstel Sekunden, statt.

Um die nichtthermische Schmelze überhaupt sichtbar machen zu können, griffen die Physiker zu einem Trick: Einen Teil des Laserstrahls wandelten sie zum Beobachten des Effektes in Röntgenstrahlen um. Diese ließen sie auf den selben Kristall treffen, auf den sie den anderen Teil des Lasers direkt gelenkt hatten, wobei die Auftreffzeiten einstellbar sind. Der zweite Laserstrahl veränderte durch seine hohe Leistung die Struktur der Kristalloberfläche. "Mit Hilfe der Röntgenstrahlen können wir die Bewegung der Atome sichtbar machen, während mit normalem Licht nur die Darstellung optischer Veränderungen möglich ist", beschreibt Ingo Uschmann die Vorteile des Verfahrens.

Herzstücke des Versuchsaufbaus sind die dabei verwendeten gebogenen Kristalle, mit denen die Röntgenstrahlung auf den zu schmelzenden Kristall geleitet wird. Für das jetzt in "Nature" beschriebene Experiment verwendeten die Jenaer Wissenschaftler einen Quarzkristall, aus dem sie in mühevoller Handarbeit einen maßgeschneiderten Röntgenspiegel angefertigt hatten. Dazu brachten sie eine 0,07 mm dünne Scheibe des Kristalls auf einen gebogenenTräger aus Messing auf. Der Krümmungsradius musste dabei exakt stimmen, um das erwünschte Versuchsergebniss zu erzielen. "Wir sind weltweit die einzige Gruppe, die solche Kristall-Werkstücke mit der erforderlichen Präzision herstellen kann", betont Eckhart Förster.

Interessant sind ihre Arbeiten vor allem für viele andere Forschungsgebiete in der Chemie, der Physik und auch der Strukturbiologie: "Mit derartig kurz gepulsten Laser- und Röntgenstrahlen kann man quasi in Zeitlupe ultraschnelle Prozesse in der Natur beobachten", so Eckhart Förster. Eine technische Anwendung ihrer Ergebnisse ist nach Ansicht von Förster und Uschmann noch nicht unmittelbar absehbar, aber zum Beispiel in der Halbleitertechnologie möglich.

Aufgrund ihrer langjährigen Erfahrung sind die Jenaer Physiker mit ihrer Gruppe international gefragte Partner. Die Versuche zur vorliegenden Veröffentlichung haben sie mit französischen und dänischen Kollegen an einer Großforschungsanlage im französischen Palaiseau durchgeführt. Inzwischen verfügt aber das Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität im Labor von Prof. Dr. Roland Sauerbrey, Dr. Thomas Feurer und Andreas Morack selbst über die entsprechende technische Ausstattung. "Wir erreichen kürzere Impulszeiten als Großforschungseinrichtungen", sagt Förster, "damit bestimmen wir die Weltspitze." Er und seine Kollegen sind in zahlreichen Netzwerken aktiv, so in den EU-geförderten Programmen FAMTO ("Ultra Fast Atomic Movie Tools") und XPOSE ("X-ray Probing of Structural Evolution of Matter").

Ansprechpartner:
Prof. Dr. Eckhart Förster
Forschungsgruppe Röntgenoptik


Tel.: 03641/ 9 47261
Fax: 9 47262
E-Mail: eckhart.foerster@uni-jena.de
Sie finden den Artikel unterhttp://www.nature.com

Susanne Liedtke
Friedrich Schiller Universität
Referat Öffentlichkeitsarbeit
Fürstengraben 1
07743 Jena
Tel: 03641/ 93 10 40
Fax: 03641/ 93 10 42
E-Mail: Susanne.Liedtke@uni-jena.de

Weitere Informationen finden Sie im WWW:

Susanne Liedtke | idw

Weitere Berichte zu: Kristall Laserstrahl Röntgenstrahl

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

nachricht Rotierende Rugbybälle unter den massereichsten Galaxien
23.05.2018 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wenn Korallen Plastik fressen

23.05.2018 | Ökologie Umwelt- Naturschutz

Ventile für winzige Teilchen

23.05.2018 | Materialwissenschaften

GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

23.05.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics