Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals magnetische Struktur auf atomarer Skala sichtbar

16.02.2001


Magnetismus ist uns aus dem Alltag wohl bekannt. Dennoch war es auf atomarer Ebene bis heute nicht möglich, einem Material anzusehen, ob es magnetisch ist oder nicht. Dies ist nun erstmals gelungen - ein großer Erfolg nicht nur für die Grundlagenforschung, denn magnetische Werkstoffe besitzen heute große wirtschaftliche Bedeutung, zum Beispiel als Speichermedium für die Computerindustrie.

Viele werden sich an das kleine Experiment aus der Schulzeit erinnern: Um Magnetismus sichtbar zu machen, legte der Physiklehrer ein Blatt Papier auf einen Stabmagneten. Dann schüttete er Eisenspäne auf das Papier, und die Eisenspäne ordneten sich wie von Geisterhand entlang von Linien an, die die Enden ("Pole") des Magneten miteinander verbanden. Die Eisenspäne zeichneten das ansonsten unsichtbare magnetische Feld nach. Was der Physiklehrer meist nicht verriet: Wenn die Physiker magnetische Materialien unter dem Mikroskop ansahen - und sei es unter einem modernen Rastertunnelmikroskop, das einzelne Atome sichtbar macht - dann konnten sie dem Atom seinen Magnetismus nicht ansehen. Es gab bisher nur indirekte Beweise für die Existenz von magnetischen Feldern.
"Das ist nun anders", sagt Dr. Stefan Blügel, theoretischer Physiker am Institut für Festkörperforschung im Forschungszentrum Jülich. "Theoretische Modelle, Simulationen mit Supercomputern und ein Spezialmikroskop Hamburger Kollegen haben kürzlich dazu geführt, dass wir magnetische Strukturen auf atomarer Skala erstmals sehen konnten." Dabei galt das Augenmerk der Forscher insbesondere den "antiferromagnetischen Materialien". Sie sind besonders interessant für die magnetische Datenspeicherung.


Am Anfang der Arbeit stand reine Theorie: "Wir haben zuerst ein theoretisches Modell dafür entwickelt, wie magnetische Muster auf atomarer Ebene aussehen könnten", erklärt Blügel. Für jedes Atom postulierten die Forscher eine magnetische Ausrichtung, das magnetische Moment. Atome mit einem magnetischen Moment kann man sich wie Kompassnadeln vorstellen, die - bei ferromagnetischen Materialien - alle in eine Richtung zeigen. Anders bei antiferromagnetischen Materialien: Bei anti-ferromagnetischen Dünnschichten gingen die Forscher in ihren Modellen davon aus, dass das magnetische Moment einer Reihe Atome dem magnetischen Moment der jeweils benachbarten Reihe entgegengesetzt ausgerichtet sei. "Wenn unsere Theorie richtig wäre, dann müsste man dieses magnetische Streifenmuster mit einem speziell eingerichteten Rastertunnelmikroskop beobachten können", sagtBlügel.
Ein Spezialmikroskop zur Untersuchung magnetischer Strukturen befindet sich an der Universität Hamburg. Durch die vorangegangenen Simulationen auf Jülicher Supercomputern konnten die Jülicher Wissenschaftler ihren Hamburger Kollegen genau sagen, wie ihr Gerät einzurichten sei, um das antiferromagnetische Streifenmuster sehen zu können. Tatsächlich beobachteten die Hamburger Kollegen daraufhin bei Antiferromagneten ein Streifenmuster. "Das Muster beweist, dass von Atomreihe zu Atomreihe jeweils entgegengesetzte Ausrichtungen des magnetischen Moments bestehen", sagt Blügel.
"Wir nehmen an, dass bei manchen Materialien das magnetische Moment von Atomen - dreidimensional betrachtet - sogar in jede beliebige Richtung zeigen kann", sagt Blügel. "Das wollen wir im nächsten Schritt beweisen." Eines Tages hoffen die Forscher, jedes einzelne Atom ansteuern, auslesen und seine magnetische Ausrichtung gezielt verändern zu können. Dann könnte jedes Atom genau ein Bit an Information speichern. Dies würde einen gigantischen Fortschritt bei der Speicherkapazität von Computerfestplatten bedeuten. Zum Vergleich: Auf heutigen Festplatten wird ein Bit durch einen magnetisierten Bereich auf der Festplatte dargestellt, der rund 100.000.000 Atome umfasst. Könnte jedes einzelne Atom ein Bit speichern, würde die Speicherkapazität der Festplatte hundertmillionenfach gesteigert.

Detektion magnetischer Muster: In der oberen Bildhälfte die Spitze eines Rastertunnelmikroskops, an deren Ende sich ein einziges Atom mit einer bestimmten magnetischen Ausrichtung befindet. Während die Spitze in geringem Abstand über antiferromagnetische Schichten geführt wird, macht sie Streifen gleicher und entgegengesetzter magnetischer Ausrichtung sichtbar.


Abb.: Forschungszentrum Jülich


Weitere Informationen finden Sie im WWW:

Peter Schäfer | idw

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten