Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals magnetische Struktur auf atomarer Skala sichtbar

16.02.2001


Magnetismus ist uns aus dem Alltag wohl bekannt. Dennoch war es auf atomarer Ebene bis heute nicht möglich, einem Material anzusehen, ob es magnetisch ist oder nicht. Dies ist nun erstmals gelungen - ein großer Erfolg nicht nur für die Grundlagenforschung, denn magnetische Werkstoffe besitzen heute große wirtschaftliche Bedeutung, zum Beispiel als Speichermedium für die Computerindustrie.

Viele werden sich an das kleine Experiment aus der Schulzeit erinnern: Um Magnetismus sichtbar zu machen, legte der Physiklehrer ein Blatt Papier auf einen Stabmagneten. Dann schüttete er Eisenspäne auf das Papier, und die Eisenspäne ordneten sich wie von Geisterhand entlang von Linien an, die die Enden ("Pole") des Magneten miteinander verbanden. Die Eisenspäne zeichneten das ansonsten unsichtbare magnetische Feld nach. Was der Physiklehrer meist nicht verriet: Wenn die Physiker magnetische Materialien unter dem Mikroskop ansahen - und sei es unter einem modernen Rastertunnelmikroskop, das einzelne Atome sichtbar macht - dann konnten sie dem Atom seinen Magnetismus nicht ansehen. Es gab bisher nur indirekte Beweise für die Existenz von magnetischen Feldern.
"Das ist nun anders", sagt Dr. Stefan Blügel, theoretischer Physiker am Institut für Festkörperforschung im Forschungszentrum Jülich. "Theoretische Modelle, Simulationen mit Supercomputern und ein Spezialmikroskop Hamburger Kollegen haben kürzlich dazu geführt, dass wir magnetische Strukturen auf atomarer Skala erstmals sehen konnten." Dabei galt das Augenmerk der Forscher insbesondere den "antiferromagnetischen Materialien". Sie sind besonders interessant für die magnetische Datenspeicherung.


Am Anfang der Arbeit stand reine Theorie: "Wir haben zuerst ein theoretisches Modell dafür entwickelt, wie magnetische Muster auf atomarer Ebene aussehen könnten", erklärt Blügel. Für jedes Atom postulierten die Forscher eine magnetische Ausrichtung, das magnetische Moment. Atome mit einem magnetischen Moment kann man sich wie Kompassnadeln vorstellen, die - bei ferromagnetischen Materialien - alle in eine Richtung zeigen. Anders bei antiferromagnetischen Materialien: Bei anti-ferromagnetischen Dünnschichten gingen die Forscher in ihren Modellen davon aus, dass das magnetische Moment einer Reihe Atome dem magnetischen Moment der jeweils benachbarten Reihe entgegengesetzt ausgerichtet sei. "Wenn unsere Theorie richtig wäre, dann müsste man dieses magnetische Streifenmuster mit einem speziell eingerichteten Rastertunnelmikroskop beobachten können", sagtBlügel.
Ein Spezialmikroskop zur Untersuchung magnetischer Strukturen befindet sich an der Universität Hamburg. Durch die vorangegangenen Simulationen auf Jülicher Supercomputern konnten die Jülicher Wissenschaftler ihren Hamburger Kollegen genau sagen, wie ihr Gerät einzurichten sei, um das antiferromagnetische Streifenmuster sehen zu können. Tatsächlich beobachteten die Hamburger Kollegen daraufhin bei Antiferromagneten ein Streifenmuster. "Das Muster beweist, dass von Atomreihe zu Atomreihe jeweils entgegengesetzte Ausrichtungen des magnetischen Moments bestehen", sagt Blügel.
"Wir nehmen an, dass bei manchen Materialien das magnetische Moment von Atomen - dreidimensional betrachtet - sogar in jede beliebige Richtung zeigen kann", sagt Blügel. "Das wollen wir im nächsten Schritt beweisen." Eines Tages hoffen die Forscher, jedes einzelne Atom ansteuern, auslesen und seine magnetische Ausrichtung gezielt verändern zu können. Dann könnte jedes Atom genau ein Bit an Information speichern. Dies würde einen gigantischen Fortschritt bei der Speicherkapazität von Computerfestplatten bedeuten. Zum Vergleich: Auf heutigen Festplatten wird ein Bit durch einen magnetisierten Bereich auf der Festplatte dargestellt, der rund 100.000.000 Atome umfasst. Könnte jedes einzelne Atom ein Bit speichern, würde die Speicherkapazität der Festplatte hundertmillionenfach gesteigert.

Detektion magnetischer Muster: In der oberen Bildhälfte die Spitze eines Rastertunnelmikroskops, an deren Ende sich ein einziges Atom mit einer bestimmten magnetischen Ausrichtung befindet. Während die Spitze in geringem Abstand über antiferromagnetische Schichten geführt wird, macht sie Streifen gleicher und entgegengesetzter magnetischer Ausrichtung sichtbar.


Abb.: Forschungszentrum Jülich


Weitere Informationen finden Sie im WWW:

Peter Schäfer | idw

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie