Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals magnetische Struktur auf atomarer Skala sichtbar

16.02.2001


Magnetismus ist uns aus dem Alltag wohl bekannt. Dennoch war es auf atomarer Ebene bis heute nicht möglich, einem Material anzusehen, ob es magnetisch ist oder nicht. Dies ist nun erstmals gelungen - ein großer Erfolg nicht nur für die Grundlagenforschung, denn magnetische Werkstoffe besitzen heute große wirtschaftliche Bedeutung, zum Beispiel als Speichermedium für die Computerindustrie.

Viele werden sich an das kleine Experiment aus der Schulzeit erinnern: Um Magnetismus sichtbar zu machen, legte der Physiklehrer ein Blatt Papier auf einen Stabmagneten. Dann schüttete er Eisenspäne auf das Papier, und die Eisenspäne ordneten sich wie von Geisterhand entlang von Linien an, die die Enden ("Pole") des Magneten miteinander verbanden. Die Eisenspäne zeichneten das ansonsten unsichtbare magnetische Feld nach. Was der Physiklehrer meist nicht verriet: Wenn die Physiker magnetische Materialien unter dem Mikroskop ansahen - und sei es unter einem modernen Rastertunnelmikroskop, das einzelne Atome sichtbar macht - dann konnten sie dem Atom seinen Magnetismus nicht ansehen. Es gab bisher nur indirekte Beweise für die Existenz von magnetischen Feldern.
"Das ist nun anders", sagt Dr. Stefan Blügel, theoretischer Physiker am Institut für Festkörperforschung im Forschungszentrum Jülich. "Theoretische Modelle, Simulationen mit Supercomputern und ein Spezialmikroskop Hamburger Kollegen haben kürzlich dazu geführt, dass wir magnetische Strukturen auf atomarer Skala erstmals sehen konnten." Dabei galt das Augenmerk der Forscher insbesondere den "antiferromagnetischen Materialien". Sie sind besonders interessant für die magnetische Datenspeicherung.


Am Anfang der Arbeit stand reine Theorie: "Wir haben zuerst ein theoretisches Modell dafür entwickelt, wie magnetische Muster auf atomarer Ebene aussehen könnten", erklärt Blügel. Für jedes Atom postulierten die Forscher eine magnetische Ausrichtung, das magnetische Moment. Atome mit einem magnetischen Moment kann man sich wie Kompassnadeln vorstellen, die - bei ferromagnetischen Materialien - alle in eine Richtung zeigen. Anders bei antiferromagnetischen Materialien: Bei anti-ferromagnetischen Dünnschichten gingen die Forscher in ihren Modellen davon aus, dass das magnetische Moment einer Reihe Atome dem magnetischen Moment der jeweils benachbarten Reihe entgegengesetzt ausgerichtet sei. "Wenn unsere Theorie richtig wäre, dann müsste man dieses magnetische Streifenmuster mit einem speziell eingerichteten Rastertunnelmikroskop beobachten können", sagtBlügel.
Ein Spezialmikroskop zur Untersuchung magnetischer Strukturen befindet sich an der Universität Hamburg. Durch die vorangegangenen Simulationen auf Jülicher Supercomputern konnten die Jülicher Wissenschaftler ihren Hamburger Kollegen genau sagen, wie ihr Gerät einzurichten sei, um das antiferromagnetische Streifenmuster sehen zu können. Tatsächlich beobachteten die Hamburger Kollegen daraufhin bei Antiferromagneten ein Streifenmuster. "Das Muster beweist, dass von Atomreihe zu Atomreihe jeweils entgegengesetzte Ausrichtungen des magnetischen Moments bestehen", sagt Blügel.
"Wir nehmen an, dass bei manchen Materialien das magnetische Moment von Atomen - dreidimensional betrachtet - sogar in jede beliebige Richtung zeigen kann", sagt Blügel. "Das wollen wir im nächsten Schritt beweisen." Eines Tages hoffen die Forscher, jedes einzelne Atom ansteuern, auslesen und seine magnetische Ausrichtung gezielt verändern zu können. Dann könnte jedes Atom genau ein Bit an Information speichern. Dies würde einen gigantischen Fortschritt bei der Speicherkapazität von Computerfestplatten bedeuten. Zum Vergleich: Auf heutigen Festplatten wird ein Bit durch einen magnetisierten Bereich auf der Festplatte dargestellt, der rund 100.000.000 Atome umfasst. Könnte jedes einzelne Atom ein Bit speichern, würde die Speicherkapazität der Festplatte hundertmillionenfach gesteigert.

Detektion magnetischer Muster: In der oberen Bildhälfte die Spitze eines Rastertunnelmikroskops, an deren Ende sich ein einziges Atom mit einer bestimmten magnetischen Ausrichtung befindet. Während die Spitze in geringem Abstand über antiferromagnetische Schichten geführt wird, macht sie Streifen gleicher und entgegengesetzter magnetischer Ausrichtung sichtbar.


Abb.: Forschungszentrum Jülich


Weitere Informationen finden Sie im WWW:

Peter Schäfer | idw

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ultra-sensitiv dank quantenmechanischer Verschränkung

28.06.2017 | Physik Astronomie

Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an

28.06.2017 | Biowissenschaften Chemie

Umfangreiche Fördermaßnahmen für Forschung an Chromatin, Nebenniere und Krebstherapie

28.06.2017 | Förderungen Preise