Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals magnetische Struktur auf atomarer Skala sichtbar

16.02.2001


Magnetismus ist uns aus dem Alltag wohl bekannt. Dennoch war es auf atomarer Ebene bis heute nicht möglich, einem Material anzusehen, ob es magnetisch ist oder nicht. Dies ist nun erstmals gelungen - ein großer Erfolg nicht nur für die Grundlagenforschung, denn magnetische Werkstoffe besitzen heute große wirtschaftliche Bedeutung, zum Beispiel als Speichermedium für die Computerindustrie.

Viele werden sich an das kleine Experiment aus der Schulzeit erinnern: Um Magnetismus sichtbar zu machen, legte der Physiklehrer ein Blatt Papier auf einen Stabmagneten. Dann schüttete er Eisenspäne auf das Papier, und die Eisenspäne ordneten sich wie von Geisterhand entlang von Linien an, die die Enden ("Pole") des Magneten miteinander verbanden. Die Eisenspäne zeichneten das ansonsten unsichtbare magnetische Feld nach. Was der Physiklehrer meist nicht verriet: Wenn die Physiker magnetische Materialien unter dem Mikroskop ansahen - und sei es unter einem modernen Rastertunnelmikroskop, das einzelne Atome sichtbar macht - dann konnten sie dem Atom seinen Magnetismus nicht ansehen. Es gab bisher nur indirekte Beweise für die Existenz von magnetischen Feldern.
"Das ist nun anders", sagt Dr. Stefan Blügel, theoretischer Physiker am Institut für Festkörperforschung im Forschungszentrum Jülich. "Theoretische Modelle, Simulationen mit Supercomputern und ein Spezialmikroskop Hamburger Kollegen haben kürzlich dazu geführt, dass wir magnetische Strukturen auf atomarer Skala erstmals sehen konnten." Dabei galt das Augenmerk der Forscher insbesondere den "antiferromagnetischen Materialien". Sie sind besonders interessant für die magnetische Datenspeicherung.


Am Anfang der Arbeit stand reine Theorie: "Wir haben zuerst ein theoretisches Modell dafür entwickelt, wie magnetische Muster auf atomarer Ebene aussehen könnten", erklärt Blügel. Für jedes Atom postulierten die Forscher eine magnetische Ausrichtung, das magnetische Moment. Atome mit einem magnetischen Moment kann man sich wie Kompassnadeln vorstellen, die - bei ferromagnetischen Materialien - alle in eine Richtung zeigen. Anders bei antiferromagnetischen Materialien: Bei anti-ferromagnetischen Dünnschichten gingen die Forscher in ihren Modellen davon aus, dass das magnetische Moment einer Reihe Atome dem magnetischen Moment der jeweils benachbarten Reihe entgegengesetzt ausgerichtet sei. "Wenn unsere Theorie richtig wäre, dann müsste man dieses magnetische Streifenmuster mit einem speziell eingerichteten Rastertunnelmikroskop beobachten können", sagtBlügel.
Ein Spezialmikroskop zur Untersuchung magnetischer Strukturen befindet sich an der Universität Hamburg. Durch die vorangegangenen Simulationen auf Jülicher Supercomputern konnten die Jülicher Wissenschaftler ihren Hamburger Kollegen genau sagen, wie ihr Gerät einzurichten sei, um das antiferromagnetische Streifenmuster sehen zu können. Tatsächlich beobachteten die Hamburger Kollegen daraufhin bei Antiferromagneten ein Streifenmuster. "Das Muster beweist, dass von Atomreihe zu Atomreihe jeweils entgegengesetzte Ausrichtungen des magnetischen Moments bestehen", sagt Blügel.
"Wir nehmen an, dass bei manchen Materialien das magnetische Moment von Atomen - dreidimensional betrachtet - sogar in jede beliebige Richtung zeigen kann", sagt Blügel. "Das wollen wir im nächsten Schritt beweisen." Eines Tages hoffen die Forscher, jedes einzelne Atom ansteuern, auslesen und seine magnetische Ausrichtung gezielt verändern zu können. Dann könnte jedes Atom genau ein Bit an Information speichern. Dies würde einen gigantischen Fortschritt bei der Speicherkapazität von Computerfestplatten bedeuten. Zum Vergleich: Auf heutigen Festplatten wird ein Bit durch einen magnetisierten Bereich auf der Festplatte dargestellt, der rund 100.000.000 Atome umfasst. Könnte jedes einzelne Atom ein Bit speichern, würde die Speicherkapazität der Festplatte hundertmillionenfach gesteigert.

Detektion magnetischer Muster: In der oberen Bildhälfte die Spitze eines Rastertunnelmikroskops, an deren Ende sich ein einziges Atom mit einer bestimmten magnetischen Ausrichtung befindet. Während die Spitze in geringem Abstand über antiferromagnetische Schichten geführt wird, macht sie Streifen gleicher und entgegengesetzter magnetischer Ausrichtung sichtbar.


Abb.: Forschungszentrum Jülich


Weitere Informationen finden Sie im WWW:

Peter Schäfer | idw

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Pharmakologie - Im Strom der Bläschen

21.07.2017 | Biowissenschaften Chemie

Verbesserung des mobilen Internetzugangs der Zukunft

21.07.2017 | Informationstechnologie

Blutstammzellen reagieren selbst auf schwere Infektionen

21.07.2017 | Biowissenschaften Chemie