Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Geheimrezept enträtselt

15.11.2002


In eine internationalen Forschung nach der feinen Struktur von Stahl haben STW-Forscher enträtselt, wie starkes Stahl entsteht. Indem sie mit einem Röntgenmikroskop glühendes Stahl analysierten, entdeckten die Forscher wie bei einer Temperatur von 900 Grad Celsius plötzlich zahlreiche mikroskopische Kristalle im Stahl entstehen. Die Befunde stehen in Science vom 1. November.



Die mikroskopischen Kristalle in Stahl sind ein Maß für die Stärke des Metalls und bestimmen die Verformungsmerkmale. Wenn im Stahl viele kleine Kristalle vorkommen, ist das Stahl stärker als wenn es aus wenig und großen Kristallen aufgebaut ist. Mit den neuen Befunden kann die Stahlindustrie den Produktionsprozess des Stahls weiter verfeinern und die Produktion besser beherrschen.

... mehr zu:
»ESRF »Kristalle »Mikrometer »Temperatur


Im niederländisch-dänisch-französischen Projekt nach der Entstehung der Mikrostruktur von Stahl richtete das Forschungsteam ein starkes Röntgenbündel auf ein Stück Stahl von gut 900 Grad Celsius. Dies geschah mit dem speziellen Röntgenmikroskop (ESRF) im französischen Grenoble. Die verstreuten Stahlen ergaben Informationen über die Struktur des inneren Stahls.

Das Forschungsteam ließ die Temperatur des Stahls um fünf Grad pro Minute sinken. Bei 822 Grad bekommt das Stahl dann eine andere Kristallstruktur. Während bei hohen Temperaturen Kristalle von circa 50 Mikrometer vorkommen, ist der Umfang der Kristalle unter dieser Temperaturgrenze 10 bis 40 Mikrometer. Die Entstehung derartiger Stahlkristalle wurde noch nie so klar bildlich dargestellt.

Die Geschwindigkeit, mit der sich die Atome neu gliedern, bestimmt zum Großteil die mechanischen Merkmale des Stahls. Indem man schnell kühlt, entstehen sehr viele, jedoch kleine Kristalle, was zu starkem Stahl führt. Der handwerkliche Schmied wusste bereits Stahl zu verstärken, indem er das glühende Stahl plötzlich in Wasser tauchte.

Im Gegensatz zu was Materialforscher früher dachten, erweist sich, dass sich die neuen Kristalle viel einfacher bilden. Die Energie, die für die Umschaltung zwischen der Struktur mit den großen Kristallen und der ’kühlen’ Struktur mit vielen kleinen Kristallen erforderlich ist, ist einige Ordnungen kleiner als die derzeitigen Modelle vorhersagen.

In der Forschung arbeiteten Materialforscher zusammen mit der Technischen Universität Delft, dem Risø National Laboratory in Dänemark und der European Synchrotron Radiation Facility (ESRF) in Frankreich. Der niederländische Teil wurde von der Technologiestiftung STW finanziert.

Nähere Informationen bei Dipl.-Ing. Erik Offerman (Technische Universität Delft, Interfakultäres Reaktor Institut), Tel. +31 (0)15 2783673, Fax +31 (0)15 2788303, E-Mail: s.e.offerman@iri.tudelft.nl

Michel Philippens | idw
Weitere Informationen:
http://www.tm.tudelft.nl/secties/mcm/people/offerman.html

Weitere Berichte zu: ESRF Kristalle Mikrometer Temperatur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maßgeschneiderte Eigenschaften erlauben Einblicke in Quantenpunkte
17.01.2018 | Ruhr-Universität Bochum

nachricht Mit Elektrizität Magnetismus umschalten
17.01.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Kobold in der Zange

17.01.2018 | Biowissenschaften Chemie

Mit Elektrizität Magnetismus umschalten

17.01.2018 | Physik Astronomie

Maßgeschneiderte Eigenschaften erlauben Einblicke in Quantenpunkte

17.01.2018 | Physik Astronomie