Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fachhochschule Jena: Messen an feinen Strukturen

30.03.2001


Sabine Kopf (vorn) und Sindy Reball bei der

Justierung des Strahlenganges an der

Fouriertransformationsanlage


Tobias Tiedt an der

Fouriertransformationsanlage


Der Fachbereich Physikalische Technik der Fachhochschule Jena konnte im vergangenen Jahr eine optische Fouriertransformationsanlage als Dauerleihgabe von der Universität Bremen übernehmen. Ermöglicht wurde diese Umsetzung dank der seit Jahren bestehenden guten Kontakte, die über Prof. Dr. em. Christian Hofmann von der Fachhochschule Jena und Prof. Dr. em. Siegfried Boseck von der Universität Bremen aufgebaut und gepflegt wurden. Nachdem Prof. Boseck in den Ruhestand verabschiedet wurde und in Bremen die Ausbildung in Optik nicht mehr in gleichem Maße durchgeführt wird, war es der Wunsch von Professor Boseck, diese Anlage, die von ihm entwickelt und aufgebaut wurde, in eine Einrichtung zu bringen, die in der Optikausbildung aktiv ist und auch durch das bestehende Umfeld die Möglichkeit hat, diese Messtechnik anzuwenden und weiterzuentwickeln.

Mit Hilfe des Gerätes ist es möglich, das bei der optischen Abbildung feiner Strukturen entstehende Beugungsbild genau zu vermessen. Dieses Beugungsbild entspricht einer Fouriertransformation des Objektes in der Form des Leistungsspektrums in der x-y-Ebene. Die Fouriertransformation ist ein in der Optik häufig angewendetes Verfahren, welches durch den Mathematiker de Fourier (1768-1830) entwickelt wurde. Bei diesem wird eine beliebige Objektstruktur in eine Anzahl von Sinusschwingungen unterschiedlicher Frequenz und Amplitude zerlegt wird, wobei die Frequenzen bzw. Amplituden jeweils Vielfache bzw. Teile der Grundschwingung sind. Der Abstand der Beugungsmaxima ist eine charakteristische Größe für die Breite der untersuchten Strukturen. Daraus lassen sich die tatsächliche Strukturbreite sowie Störungen in der Regelmäßigkeit von Strukturen ermitteln. Es ist weiterhin möglich, Größen von Partikeln im Rahmen einer Schadstoffanalytik zu bestimmen.

Durch die Herstellung spezieller Filter ist es beispielsweise machbar, direkt an fotografischen Aufnahmen (Negative) eine Korrektur vorzunehmen, um die Bildqualität deutlich zu verbessern. Dazu kann man Amplituden- sowie Phasenfilterungen durchführen, wodurch die Inhalte des Objektes ihrer Bedeutung nach neu gewichtet werden können.
Als Lichtquelle dient dabei ein 15 mW Helium-Neon-Laser mit Aufweitungsoptik für ein Objektfeld mit 50 mm Durchmesser. Der zu vermessende Ortfrequenzbereich umfasst bis zu 40 Linienpaare pro Millimeter, das entspricht einem Gitterabstand von 25 µm. Die Messdynamik erreicht acht Dekaden, d.h. man kann Messungen mit Leistungsunterschieden von 100 Watt bis zu einem Mikrowatt durchführen.

Aufbauend auf den in Bremen gemachten Erfahrungen will der Fachbereich diese Anlage in die Ausbildung der Studenten im Rahmen der Optischen Messtechnik und der Umweltmesstechnik mit einbeziehen. Weiterhin soll auch im Rahmen des OPTONET, in dem die Fachhochschule Mitglied ist, eine Zusammenarbeit mit der Industrie und mit entsprechenden Forschungseinrichtungen gefördert werden. Denkbar ist das durch die Vergabe von Praktikums- oder Diplomarbeiten, die sich mit dieser speziellen Messtechnik beschäftigen, oder direkt über Drittmittelthemen.

Annette Sell | Fachhochschule Jena

Weitere Berichte zu: Fouriertransformation Frequenz Messtechnik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie