Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenlaser-Kooperation im Rahmen des TESLA-Projekts

05.11.2002


DESY und SLAC unterzeichnen Vereinbarung in Washington



Mit der Unterzeichnung einer Kooperationsvereinbarung (Memorandum of Understanding) haben die beiden großen Beschleunigerzentren DESY (Deutsches Elektronen-Synchrotron) in Hamburg und SLAC (Stanford Linear Accelerator Center) in Kalifornien, USA, ihre Absicht "besiegelt", in der Röntgenlaser-Forschung künftig eng zusammen zu arbeiten und dieses zukunftsweisende Gebiet gemeinsam voran zu treiben. "Freie-Elektronen-Laser für Röntgenstrahlung bieten für die Erforschung der Mikrowelt revolutionierende Aussichten. Durch die jetzt vereinbarte intensive deutsch-amerikanische Zusammenarbeit ist von Beginn an eine optimale Weiterentwicklung und Nutzung dieser neuen Lichtquellen für die Wissenschaft garantiert", so Professor Dr. Albrecht Wagner, Vorsitzender des DESY-Direktoriums und einer der drei Unterzeichner des Memorandums.



Das Memorandum of Understanding dient der "Etablierung einer gemeinsamen Forschungsaktivität bei der Nutzung und Entwicklung des wissenschaftlichen Potenzials sowohl der Linac Coherent Light Source (LCLS) als auch des (bei DESY geplanten) TESLA X-Ray Free-Electron Lasers (TESLA-XFEL)." Es wurde heute im Energie-Ministerium (Department of Energy, DOE) in Washington unterzeichnet. Die Vereinbarung regelt unter anderem den Austausch von Wissenschaftlern, technischen Komponenten, Forschungs-ergebnissen und -daten sowie von allgemeinem Know-How. Damit soll ein schneller Erfolg des wissenschaftlichen Programms beider Anlagen, die sich in ihren Eigenschaften ergänzen und nach heutiger Planung 2008 beziehungsweise 2011 in Betrieb gehen können, erzielt werden. In einem ersten Schritt werden die Forschungs-ergebnisse an den beiden kleineren Pilotanlagen, die sowohl in Stanford als auch in Hamburg schon im Bau sind, gemeinsam genutzt. "Röntgenlaser sind eine große Herausforderung und eine enorme Chance für die Zukunft!" kommentiert Prof. Dr. Jochen R. Schneider, DESY-Forschungsdirektor und Mitunterzeichner des Memorandums. "Beide Anlagen bieten bahnbrechende Forschungsmöglichkeiten, die über das Potenzial heutiger Strahlungsquellen weit hinausgehen."

DESY und SLAC gehören zu den weltweit führenden Zentren für Grundlagenforschung, in denen Elektronen-Beschleuniger entwickelt und betrieben werden. Sie dienen sowohl der Elementarteilchenforschung als auch vielfältigen Untersuchungen in Physik, Biologie, Materialwissenschaften und Chemie, die mit der an diesen Beschleunigern erzeugten elektromagnetischen Strahlung durchgeführt werden können. Der nächste Schritt auf dem Weg zu noch leistungsfähigeren Lichtquellen sind so genannte Freie-Elektronen-Laser (FEL). Sie erzeugen laserartige Röntgenstrahlung mit sehr kurzen Wellenlängen und sehr hoher Leuchtkraft. DESY und SLAC haben in den vergangenen Jahren eine Schlüsselrolle bei der Entwicklung von FEL-Röntgenlasern gespielt. Heute ist die Fachwelt weltweit von der technischen Machbarkeit dieser neuen Generation von Forschungsinstrumenten überzeugt. - "Internationale Zusammenarbeit ist der effizienteste Weg Forschungsanlagen von Weltniveau zu bauen. Im Rahmen der Forschungs- und Entwicklungsarbeiten für einen künftigen Linearbeschleuniger für Elementarteilchenphysik gibt es schon eine sehr lebendige Kooperation zwischen SLAC, DESY und dem japanischen Institut KEK. Das heutige Abkommen stärkt die Verbindungen zwischen hervorragenden Zentren auf internationaler Ebene." sagte der SLAC-Direktor, Professor Jonathan Dorfan, bei der heutigen Unterzeichnung.

Im Rahmen des TESLA-Projekts schlägt DESY vor, parallel zu dem geplanten 33 km langen Beschleuniger für die Elementarteilchenphysik auch einen Linearbeschleuniger für FEL-Röntgenlaser zu bauen (TESLA-XFEL). Sie erzeugen hochintensive ultrakurze Röntgenblitze mit den Eigenschaften von Laserlicht. Ihre Leuchtstärke ist in ihren Spitzenwerten um das Zehnmilliardenfache höher als die modernster Röntgenquellen, die Zeitauflösung um das Tausendfache. Die Blitzdauer beträgt weniger als eine billionstel Sekunde. Die Wellenlänge der Blitze ist so klein, dass selbst atomare Details erkennbar werden: Sie kann im Bereich zwischen einem und einem zehntel Nanometer variiert werden. Die unvorstellbar kurzen Röntgenpulse werden es den Forschern ermöglichen, regelrechte Filme aus dem Mikrokosmos aufzunehmen, etwa zu verfolgen, wie eine chemische Reaktion abläuft, wie Feststoffe entstehen oder wie die Abläufe in lebenden Zellen aussehen. - Das TESLA-Projekt wird zurzeit im Auftrag der Bundesregierung zusammen mit sieben anderen geplanten deutschen Forschungsprojekten vom Wissenschaftsrat begutachtet. Basierend auf diesem Ergebnis kann im Jahr 2003 mit einer TESLA-Entscheidung gerechnet werden.


Petra Folkerts | idw
Weitere Informationen:
http://www.desy.de/presse

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics