Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Blick in das Innere von Antiwasserstoff-Atomen

30.10.2002


Erstmals ist es Wissenschaftlern der ATRAP Kollaboration am europäischen Teilchenphysik-Zentrum CERN gelungen, einen Blick in das Innere von Antiwasserstoff-Atomen zu werfen.


An der Zusammenarbeit sind auch Wissenschaftler des Forschungszentrums Jülich, des Max-Planck-Instituts für Quantenoptik sowie der Ludwig-Maximilians-Universität München beteiligt. Der Aufsehen erregende Nachweis der Antiwasserstoff-Atome erfolgt durch ein neuartiges Verfahren und liefert erstmals ein eindeutiges, störungsfreies Signal. Die Wissenschaftler sind jetzt in der Lage, pro Stunde mehr Antiwasserstoff-Atome zu erzeugen, als jemals zuvor nachgewiesen wurden. In einer wissenschaftlichen Veröffentlichung, die in Physical Review Letters erscheinen wird, wird von mehr als 1400 kalten Antiwasserstoff-Atomen berichtet.

Wasserstoff ist das einfachste Atom und besteht aus einem Elektron und einem Proton. Der Antimaterie-Partner des Protons ist das Antiproton und der des Elektrons das Positron. Aus diesen Antimaterie-Bausteinen setzt sich das Antiwasserstoff-Atom zusammen. Die elementaren Teilchen und ihre entsprechenden Antiteilchen haben dieselbe Masse, dieselbe Ladung, aber ein entgegengesetztes Ladungsvorzeichen. Wenn ein Teilchen mit seinem Antiteilchen zusammentrifft, vernichten sie sich gegenseitig und es wird die Energie freigesetzt, die der Masse entspricht.


Die gegenwärtig akzeptierte Theorie der Physik besagt, dass das Antiwasserstoff-Atom und das gewöhnliche Wasserstoff-Atom genau gleiche Eigenschaften haben. Diese Vorhersage wurde allerdings noch nie experimentell geprüft. Neuere angedachte Modelle lassen geringe Unterschiede zwischen Antiwasserstoff und Wasserstoff zu. Die Aufklärung dieser wichtigen Fragestellung wird ein zentraler Bestandteil der zukünftigen Untersuchungen sein.

Die ATRAP Kollaboration am europäischen Teilchenphysik-Zentrum CERN in der Nähe von Genf setzt sich aus Wissenschaftlern der Harvard Universität, des Forschungszentrums Jülich, des CERN, des Max-Planck-Instituts für Quantenoptik sowie der Ludwig-Maximilians-Universität München und der York Universität in Toronto zusammen. Im Laufe des Jahres hat die ATRAP Kollaboration mehrere Methoden zur Erzeugung von Antiwasserstoff geprüft, um optimale Voraussetzungen für physikalische Untersuchungen dieses Atoms zu schaffen.

Inzwischen können die Forscher pro Stunde nicht nur mehr Antiwasserstoff-Atome erzeugen, als jemals zuvor nachgewiesen wurden, es ist ihnen sogar gelungen, erstmals einen flüchtigen Blick in das Innere jener Antimaterie-Atome zu werfen. Die Temperatur der erzeugten Antiwasserstoff-Atome lag dabei nur wenige Grad über dem absoluten Nullpunkt bei ?273 Grad Celsius. Damit sind die Antiatome schon fast so kalt - also langsam -, dass sie in Magnetfeldern ausreichend lange gespeichert werden können, um Präzisions-Messungen an ihnen durchzuführen.

Mit der Speichermöglichkeit vieler Antiwasserstoff-Atome sind Laserexperimente absehbar, die winzige Unterschiede zwischen Antiwasserstoff und Wasserstoff offenbaren können, falls es sie gibt. Messungen dieser Art werden grundlegende Theorien der Physik einer Prüfung unterziehen und geben möglicherweise sogar einen Hinweis auf das Mysterium, warum unser Universum ausschließlich aus Materie besteht und nichts auf die Existenz einer Welt aus Antimaterie deutet.

Eine neue Grundidee führt zum Erfolg

Wenn man ein Antiwasserstoff-Atom zwischen die beiden Pole einer Batterie bringt, wird die positive Ladung des Positrons zum negativen Pol gezogen, während die negative Ladung des Antiprotons vom positiven Pol der Batterie angezogen wird. Ist die Batteriespannung groß genug, wird das Atom auseinander gerissen. Bei hinreichend weitem Abstand von Positron und Antiproton im Antiwasserstoff-Atom genügt eine kleine Spannung, um das Atom auseinander zu reißen. Sind Positron und Antiproton dagegen näher beieinander, muss eine höhere Spannung angelegt werden, um das Antiwasserstoff-Atom zu zerlegen. Dies ist die Grundidee des Verfahrens, das die ATRAP Forscher verwendet haben, um die Antiwasserstoff-Atome zu untersuchen.

Die quantenmechanischen Zustände der Atome unterscheiden sich in dem mittleren Abstand von Antiproton und Positron. Sie verraten dem Physiker wichtige Details über die Struktur des Antiwasserstoffs. Einen ersten Hinweis auf solche Zustände der Atome haben die Forscher gewonnen, indem sie bestimmten, bei welchen elektrischen Feldern die Antiwasserstoff-Atome in ihrer Apparatur zerlegt werden.

Indem sie die Antiwasserstoff-Atome wie oben beschrieben zerlegen, können die Wissenschaftler von ATRAP Störsignale beim Nachweis der Antiatome vollkommen unterdrücken. Diese Vorgehensweise ist bislang einzigartig in diesem Gebiet. Bei herkömmlichen Experimenten entstehen typischerweise Störereignisse, die nicht von echten Antiwasserstoff-Signalen unterschieden werden können. Dieser Umstand erlaubte lediglich eine Abschätzung des Mittelwertes der falschen Ereignisse. Einzelnen Signalen kann hingegen nicht "Wahr" oder "Falsch" zugeordnet werden. In dem störungsfreien Nachweis, den die Forscher von ATRAP erstmals erreicht haben, ist jedes beobachtete Antiwasserstoff-Signal "echt".

Neben ATRAP widmet sich am CERN noch ein zweites Experiment, ATHENA, der Untersuchung von Antiwasserstoff-Atomen. Beide verwenden für die Erzeugung dieses Elementes der Antimaterie Antiprotonen, die vom "Antiprotonen Abbremser" (engl. Antiproton Decelerator) des CERN geliefert werden. Der ATHENA Kollaboration stehen wesentlich höhere Positronenraten zur Verfügung. Wie kürzlich in der Zeitschrift Nature berichtet, wurde die Erzeugung von Antiwasserstoff im ATHENA Experiment dadurch nachgewiesen, dass die erzeugten Antiwasserstoff-Atome auf gewöhnliche Materie treffen und ihre Existenz durch die gleichzeitige Vernichtung der Bestandteile, von Antiprotonen und Positronen, verraten.

Beteiligte Institutionen und ihre Kontaktpersonen:

Forschungszentrum Jülich
Professor Walter Oelert
IKP-1, Forschungszentrum Jülich
D-52425 Jülich, Germany
Tel.: +49 2461 61 4156 (3091)
Fax: +49 2461 61 3930
CERN-Tel.: +41 22 76 79813 (75829) (71758)
Handy: +49 178 7190524
E-mail: w.oelert@fz-juelich.de

Max-Planck-Institut für Quantenoptik (Garching, Germany)
und Ludwig-Maximilians-Universität München (Germany)
Dr. Jochen Walz (CERN-Fellow 2001--2002)
Hans-Kopfermann-Strasse 1
D-85748 Garching, Germany
Tel.: +49 8932 905 281 (207)
FAX: +49 8932 905 207
CERN-Tel.: +41 22 76 79813
E-mail: jcw@mpq.mpg.de

Harvard Universität (Cambridge, MA, USA)
Professor Gerald Gabrielse
Physics Department
Harvard University
Cambridge, MA 02138, USA
Tel.: +001 617 495 4381
Handy: +001 617 834 7929
CERN-Tel.: +41 22 76 79813
CERN-Handy: +41 79 201 4281
E-mail: gabrielse@physics.harvard.edu

York Universität
Professor Eric Hessels
Department of Physics and Astronomy
Petrie Science Building
Toronto, Ontario M3J 1P3, Canada
E-mail: hessels@york.ca
CERN-Tel.: +41 22 76 79813

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de

Weitere Berichte zu: ATRAP Antiproton Antiwasserstoff-Atom CERN Kollaboration

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heinz Maier-Leibnitz-Preise 2017: DFG und BMBF zeichnen vier Forscherinnen und sechs Forscher aus

23.02.2017 | Förderungen Preise

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungsnachrichten

Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor

23.02.2017 | Physik Astronomie