Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kasseler Physiker erzeugen Elektron mit Doppelstruktur

22.10.2002


Der Nachweis dafür, dass freie Materieteilchen durch Lichtpulse gezielt geformt und so die Eigenschaften von Laserpulsen auf Elektronen übertragen werden können, ist Forschern am Fachbereich Physik der Universität Kassel gelungen.



Praktische Anwendung könnte die Technologie in der Röntgenmedizin finden, wo mit ihrer Hilfe - zum Nutzen der Patienten - die gefährliche Strahlenbelastung reduziert werden kann.



Der Nachweis dafür, dass freie Materieteilchen durch Lichtpulse gezielt geformt und so die Eigenschaften von Laserpulsen auf Elektronen übertragen werden können, ist Forschern am Fachbereich Physik der Universität Kassel gelungen. Praktische Anwendung könnte die Technologie in der Röntgenmedizin finden, wo mit ihrer Hilfe - zum Nutzen der Patienten - die gefährliche Strahlenbelastung reduziert werden kann. Die Wissenschaftler der Kasseler Forschungsgruppe um Thomas Baumert arbeiteten bei ihren Untersuchungen eng mit den Teams um Gustav Gerber von der Universität Würzburg und Bertrand Girard von der Universität Toulouse zusammen. Die Resultate ihrer Experimente werden die Physiker unter dem Titel "Interferences of ultrashort free electron wave packets" in der Ausgabe der "Physical Review Letters" am 28. Oktober 2002 veröffentlichen.

Ansatzpunkt der Arbeit der Forschungsgruppen war die Erzeugung eines doppelten Lichtpulses: In einem so genannten Michelson-Interferometer trifft ein Lichtpuls auf einen teilversilberten Spiegel und wird dabei in zwei Teile aufgespalten. Die Forscher stellten sich die Frage, ob es möglich sei, eine derartige Doppelstruktur auch auf ein freies Elektron zu übertragen. Dazu beschossen sie in einem Experiment ein Atom mit dem sehr kurzen, zweigeteilten Lichtpuls und lösten so ein Elektron aus dem Atom heraus.

Bei der Beantwortung ihrer Forschungsfrage, machten sich die Wissenschaftler den Umstand zu Nutze, dass Elektronen sich nicht immer wie Teilchen verhalten, sondern wie Wellen, ähnlich denen auf einer Wasseroberfläche. Elektronenwellen können sich, ebenso wie Wasser- oder Lichtwellen, überlagern und an bestimmten Orten gegenseitig auslöschen oder verstärken - ein Phänomen, das als Interferenz bekannt ist: Überträgt sich durch den Laserbeschuss die Doppelstruktur des Lichtpulses auf das Elektron, kann es als zweigeteiltes Elektron angesehen werden. Die Elektronenwellen beginnen sich auf ihrem Weg zum Elektronenempfänger zu überlagern und Interferenzen zu erzeugen. Im Kasseler Experiment konnten solche Interferenzen in Form von zeitlichen Veränderungen des Elektronensignals nachgewiesen werden.

Da mit modernster Lasertechnik beliebig komplex geformte Laserpulse erzeugt werden können, eröffnet sich mit dem Nachweis, den Baumert, Gerber und Girard in ihrem Experiment erbrachten, die Möglichkeit, freie Elektronen gezielt zu formen und zu beeinflussen. Derzeit wird in Kassel in Zusammenarbeit mit dem Laserzentrum Hannover untersucht, inwieweit die Elektronen in einer laserbasierten Röntgenquelle dahingehend manipuliert werden können, besonders kurze Röntgenimpulse zu erzeugen. Damit würde die Strahlenbelastung für die Patienten in der Röntgenmedizin deutlich verringert werden.

Infos zum Thema:

Prof. Dr. Thomas Baumert
Universität Kassel
Fachbereich Physik
Telefon: 0561 - 804 44 52
Fax: 0561 - 804 42 02
E-mail: tbaumert@physik.uni-kassel.de

Ingrid Hildebrand | idw
Weitere Informationen:
http://www.uni-kassel.de

Weitere Berichte zu: Doppelstruktur Elektron Lichtpuls Physik Röntgenmedizin Strahlenbelastung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quanten-Boten kommunizieren doppelt so schnell
22.02.2018 | Österreichische Akademie der Wissenschaften

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics