Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kasseler Physiker erzeugen Elektron mit Doppelstruktur

22.10.2002


Der Nachweis dafür, dass freie Materieteilchen durch Lichtpulse gezielt geformt und so die Eigenschaften von Laserpulsen auf Elektronen übertragen werden können, ist Forschern am Fachbereich Physik der Universität Kassel gelungen.



Praktische Anwendung könnte die Technologie in der Röntgenmedizin finden, wo mit ihrer Hilfe - zum Nutzen der Patienten - die gefährliche Strahlenbelastung reduziert werden kann.



Der Nachweis dafür, dass freie Materieteilchen durch Lichtpulse gezielt geformt und so die Eigenschaften von Laserpulsen auf Elektronen übertragen werden können, ist Forschern am Fachbereich Physik der Universität Kassel gelungen. Praktische Anwendung könnte die Technologie in der Röntgenmedizin finden, wo mit ihrer Hilfe - zum Nutzen der Patienten - die gefährliche Strahlenbelastung reduziert werden kann. Die Wissenschaftler der Kasseler Forschungsgruppe um Thomas Baumert arbeiteten bei ihren Untersuchungen eng mit den Teams um Gustav Gerber von der Universität Würzburg und Bertrand Girard von der Universität Toulouse zusammen. Die Resultate ihrer Experimente werden die Physiker unter dem Titel "Interferences of ultrashort free electron wave packets" in der Ausgabe der "Physical Review Letters" am 28. Oktober 2002 veröffentlichen.

Ansatzpunkt der Arbeit der Forschungsgruppen war die Erzeugung eines doppelten Lichtpulses: In einem so genannten Michelson-Interferometer trifft ein Lichtpuls auf einen teilversilberten Spiegel und wird dabei in zwei Teile aufgespalten. Die Forscher stellten sich die Frage, ob es möglich sei, eine derartige Doppelstruktur auch auf ein freies Elektron zu übertragen. Dazu beschossen sie in einem Experiment ein Atom mit dem sehr kurzen, zweigeteilten Lichtpuls und lösten so ein Elektron aus dem Atom heraus.

Bei der Beantwortung ihrer Forschungsfrage, machten sich die Wissenschaftler den Umstand zu Nutze, dass Elektronen sich nicht immer wie Teilchen verhalten, sondern wie Wellen, ähnlich denen auf einer Wasseroberfläche. Elektronenwellen können sich, ebenso wie Wasser- oder Lichtwellen, überlagern und an bestimmten Orten gegenseitig auslöschen oder verstärken - ein Phänomen, das als Interferenz bekannt ist: Überträgt sich durch den Laserbeschuss die Doppelstruktur des Lichtpulses auf das Elektron, kann es als zweigeteiltes Elektron angesehen werden. Die Elektronenwellen beginnen sich auf ihrem Weg zum Elektronenempfänger zu überlagern und Interferenzen zu erzeugen. Im Kasseler Experiment konnten solche Interferenzen in Form von zeitlichen Veränderungen des Elektronensignals nachgewiesen werden.

Da mit modernster Lasertechnik beliebig komplex geformte Laserpulse erzeugt werden können, eröffnet sich mit dem Nachweis, den Baumert, Gerber und Girard in ihrem Experiment erbrachten, die Möglichkeit, freie Elektronen gezielt zu formen und zu beeinflussen. Derzeit wird in Kassel in Zusammenarbeit mit dem Laserzentrum Hannover untersucht, inwieweit die Elektronen in einer laserbasierten Röntgenquelle dahingehend manipuliert werden können, besonders kurze Röntgenimpulse zu erzeugen. Damit würde die Strahlenbelastung für die Patienten in der Röntgenmedizin deutlich verringert werden.

Infos zum Thema:

Prof. Dr. Thomas Baumert
Universität Kassel
Fachbereich Physik
Telefon: 0561 - 804 44 52
Fax: 0561 - 804 42 02
E-mail: tbaumert@physik.uni-kassel.de

Ingrid Hildebrand | idw
Weitere Informationen:
http://www.uni-kassel.de

Weitere Berichte zu: Doppelstruktur Elektron Lichtpuls Physik Röntgenmedizin Strahlenbelastung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie