Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kasseler Physiker erzeugen Elektron mit Doppelstruktur

22.10.2002


Der Nachweis dafür, dass freie Materieteilchen durch Lichtpulse gezielt geformt und so die Eigenschaften von Laserpulsen auf Elektronen übertragen werden können, ist Forschern am Fachbereich Physik der Universität Kassel gelungen.



Praktische Anwendung könnte die Technologie in der Röntgenmedizin finden, wo mit ihrer Hilfe - zum Nutzen der Patienten - die gefährliche Strahlenbelastung reduziert werden kann.



Der Nachweis dafür, dass freie Materieteilchen durch Lichtpulse gezielt geformt und so die Eigenschaften von Laserpulsen auf Elektronen übertragen werden können, ist Forschern am Fachbereich Physik der Universität Kassel gelungen. Praktische Anwendung könnte die Technologie in der Röntgenmedizin finden, wo mit ihrer Hilfe - zum Nutzen der Patienten - die gefährliche Strahlenbelastung reduziert werden kann. Die Wissenschaftler der Kasseler Forschungsgruppe um Thomas Baumert arbeiteten bei ihren Untersuchungen eng mit den Teams um Gustav Gerber von der Universität Würzburg und Bertrand Girard von der Universität Toulouse zusammen. Die Resultate ihrer Experimente werden die Physiker unter dem Titel "Interferences of ultrashort free electron wave packets" in der Ausgabe der "Physical Review Letters" am 28. Oktober 2002 veröffentlichen.

Ansatzpunkt der Arbeit der Forschungsgruppen war die Erzeugung eines doppelten Lichtpulses: In einem so genannten Michelson-Interferometer trifft ein Lichtpuls auf einen teilversilberten Spiegel und wird dabei in zwei Teile aufgespalten. Die Forscher stellten sich die Frage, ob es möglich sei, eine derartige Doppelstruktur auch auf ein freies Elektron zu übertragen. Dazu beschossen sie in einem Experiment ein Atom mit dem sehr kurzen, zweigeteilten Lichtpuls und lösten so ein Elektron aus dem Atom heraus.

Bei der Beantwortung ihrer Forschungsfrage, machten sich die Wissenschaftler den Umstand zu Nutze, dass Elektronen sich nicht immer wie Teilchen verhalten, sondern wie Wellen, ähnlich denen auf einer Wasseroberfläche. Elektronenwellen können sich, ebenso wie Wasser- oder Lichtwellen, überlagern und an bestimmten Orten gegenseitig auslöschen oder verstärken - ein Phänomen, das als Interferenz bekannt ist: Überträgt sich durch den Laserbeschuss die Doppelstruktur des Lichtpulses auf das Elektron, kann es als zweigeteiltes Elektron angesehen werden. Die Elektronenwellen beginnen sich auf ihrem Weg zum Elektronenempfänger zu überlagern und Interferenzen zu erzeugen. Im Kasseler Experiment konnten solche Interferenzen in Form von zeitlichen Veränderungen des Elektronensignals nachgewiesen werden.

Da mit modernster Lasertechnik beliebig komplex geformte Laserpulse erzeugt werden können, eröffnet sich mit dem Nachweis, den Baumert, Gerber und Girard in ihrem Experiment erbrachten, die Möglichkeit, freie Elektronen gezielt zu formen und zu beeinflussen. Derzeit wird in Kassel in Zusammenarbeit mit dem Laserzentrum Hannover untersucht, inwieweit die Elektronen in einer laserbasierten Röntgenquelle dahingehend manipuliert werden können, besonders kurze Röntgenimpulse zu erzeugen. Damit würde die Strahlenbelastung für die Patienten in der Röntgenmedizin deutlich verringert werden.

Infos zum Thema:

Prof. Dr. Thomas Baumert
Universität Kassel
Fachbereich Physik
Telefon: 0561 - 804 44 52
Fax: 0561 - 804 42 02
E-mail: tbaumert@physik.uni-kassel.de

Ingrid Hildebrand | idw
Weitere Informationen:
http://www.uni-kassel.de

Weitere Berichte zu: Doppelstruktur Elektron Lichtpuls Physik Röntgenmedizin Strahlenbelastung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften