Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Astronomen lokalisieren galaktischen Teilchenbeschleuniger

11.10.2002


Radiogalaxien zählen zu den leuchtstärksten Himmelsobjekten - nur strahlen sie nicht Licht ab, sondern hauptsächlich Radiowellen. Diese entstehen, wenn elektrisch geladene Teilchen, die nahezu mit Lichtgeschwindigkeit unterwegs sind, abgebremst werden und dadurch Energie verlieren


Wo genau die Partikel auf dermaßen hohe Geschwindigkeiten kommen, war bislang unbekannt. Eine Gruppe von Wissenschaftlern - darunter auch ein Astrophysiker der Universität Bonn - konnte nun erstmals die Region genauer bestimmen, in der die Teilchen beschleunigt werden. Ihre Ergebnisse haben sie jetzt in der Oktober-Ausgabe der renommierten Wissenschaftszeitschrift Science veröffentlicht.

Sie sind die Giganten des Alls: Radiogalaxien zählen zu den größten Einzelobjekten im Universum. Außerdem sind sie monströse Sender: Sie emittieren Radiowellen, die noch in Millionen von Lichtjahren Entfernung in modernen Radioteleskopen sichtbar gemacht werden können. Dabei handelt es sich um so genannte Synchrotronstrahlung, die im Kosmos immer dann entsteht, wenn relativistische Teilchen - das sind solche, die sich annähernd mit Lichtgeschwindigkeit bewegen - auf ein Magnetfeld treffen und dabei abgelenkt werden.


Wo genau diese Partikel dermaßen beschleunigt werden, haben nun erstmals Astrophysiker unter Beteiligung des Wissenschaftlers Dr. Karl-Heinz Mack vom Bonner Radioastronomischen Institut feststellen können. In den Zentren vieler Radiogalaxien befinden sich wahrscheinlich riesige Schwarze Löcher, so schwer wie einige Milliarden Sonnen. Sie erzeugen zwei in entgegengesetzte Richtung laufende Düsenstrahlen aus sehr schnellen Elektronen - wie genau das vor sich geht, ist noch unbekannt. Diese Strahlen bewegen sich mit hoher Geschwindigkeit einige 100.000 Lichtjahre weit in den intergalaktischen Raum. Ähnlich wie ein Flugzeug die Luft vor seinem Bug verdichtet, schieben sie dabei die sehr dünn verteilte Materie vor sich her. Und ganz ähnlich wie bei einem Überschall-Flieger kommt es schließlich zum großen Knall: Es entstehen starke Schockwellen, die die elektrisch geladenen Teilchen in den Düsenstrahlen noch weiter beschleunigen, bis sie schließlich fast so schnell sind wie das Licht. Hierauf folgt dann ein stetiger, starker Energieverlust, der die Teilchen entsprechend wieder langsamer werden lässt. Dabei hinterlassen sie eine Art "Bremsspur", die zunächst aus sichtbarem Licht, dann aus Infrarotstrahlung und schließlich, wenn sie schon stark abgebremst wurden, aus energieärmeren Radiowellen besteht.

Diese Radiowellen entstehen in sehr hoher Intensität und werden im Radioteleskop als helle Flecken, so genannte ’Hot Spots’ (englisch für ’Heiße Flecken’), sichtbar. Die Strahlung, die zu Beginn der "Bremsspur" entsteht, war bislang nur in wenigen Fällen nachzuweisen - und dann meist in sehr schlechter Auflösung. Das ist den drei Astronomen Almudena Prieto, Gianfranco Brunetti und Karl-Heinz Mack nun erheblich besser gelungen: Durch lange Belichtungszeiten der Radiogalaxie 3C445 mit dem Very Large Telescope der Europäischen Südsternwarte in Chile konnten sie "Bremsstrahlung" im Infrarot- und optischen Bereich nachweisen und ihre Ursprungsregionen auflösen - "eine echte Überraschung", wie Professor Dr. Uli Klein vom Radioastronomischen Institut der Universität Bonn kommentiert. Damit konnten die Wissenschaftler erstmals exakt lokalisieren, wo die Schockbeschleunigung und der nachfolgende Energieverlust der relativistischen Teilchen in den Düsenstrahlen einsetzen.

Da die Forscher so den Beginn der "Bremsspur" genauer orten konnten, wissen sie nun auch genauer, in welchem Bereich die enorme Beschleunigung stattfindet: In einem etwa 15.000 Lichtjahre großen Gebiet jenseits des ersten "Überschallknalls" werden die Teilchen energetisch immer weiter "hochgeschaukelt". "Dort scheint es zu starken Turbulenzen zu kommen, mit deren Hilfe die Beschleunigung stattfindet", erklärt Dr. Mack, der momentan zu einem Forschungsaufenthalt in Bologna weilt. "Diese wiederum entstehen anscheinend durch die Düsenstrahlen selbst, während sie sich in das intergalaktische Medium ’bohren’." Die Entdeckung der drei Astrophysiker hat insofern weitreichende Konsequenzen für die Interpretation der Radiogalaxien.

Ansprechpartner:
Professor Dr. Uli Klein
Radioastronomisches Institut der Universität Bonn
Telefon: 0228/73-3674
uklein@astro.uni-bonn.de

oder Dr. Karl-Heinz Mack
Telefon: 0039/051-6399373
E-Mail: kmack@astro.uni-bonn.de
mack@ira.cnr.it

Frank Luerweg | idw

Weitere Berichte zu: Astrophysik Düsenstrahl Lichtjahr Radiogalaxien Radiowelle Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
20.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics