Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Astronomen lokalisieren galaktischen Teilchenbeschleuniger

11.10.2002


Radiogalaxien zählen zu den leuchtstärksten Himmelsobjekten - nur strahlen sie nicht Licht ab, sondern hauptsächlich Radiowellen. Diese entstehen, wenn elektrisch geladene Teilchen, die nahezu mit Lichtgeschwindigkeit unterwegs sind, abgebremst werden und dadurch Energie verlieren


Wo genau die Partikel auf dermaßen hohe Geschwindigkeiten kommen, war bislang unbekannt. Eine Gruppe von Wissenschaftlern - darunter auch ein Astrophysiker der Universität Bonn - konnte nun erstmals die Region genauer bestimmen, in der die Teilchen beschleunigt werden. Ihre Ergebnisse haben sie jetzt in der Oktober-Ausgabe der renommierten Wissenschaftszeitschrift Science veröffentlicht.

Sie sind die Giganten des Alls: Radiogalaxien zählen zu den größten Einzelobjekten im Universum. Außerdem sind sie monströse Sender: Sie emittieren Radiowellen, die noch in Millionen von Lichtjahren Entfernung in modernen Radioteleskopen sichtbar gemacht werden können. Dabei handelt es sich um so genannte Synchrotronstrahlung, die im Kosmos immer dann entsteht, wenn relativistische Teilchen - das sind solche, die sich annähernd mit Lichtgeschwindigkeit bewegen - auf ein Magnetfeld treffen und dabei abgelenkt werden.


Wo genau diese Partikel dermaßen beschleunigt werden, haben nun erstmals Astrophysiker unter Beteiligung des Wissenschaftlers Dr. Karl-Heinz Mack vom Bonner Radioastronomischen Institut feststellen können. In den Zentren vieler Radiogalaxien befinden sich wahrscheinlich riesige Schwarze Löcher, so schwer wie einige Milliarden Sonnen. Sie erzeugen zwei in entgegengesetzte Richtung laufende Düsenstrahlen aus sehr schnellen Elektronen - wie genau das vor sich geht, ist noch unbekannt. Diese Strahlen bewegen sich mit hoher Geschwindigkeit einige 100.000 Lichtjahre weit in den intergalaktischen Raum. Ähnlich wie ein Flugzeug die Luft vor seinem Bug verdichtet, schieben sie dabei die sehr dünn verteilte Materie vor sich her. Und ganz ähnlich wie bei einem Überschall-Flieger kommt es schließlich zum großen Knall: Es entstehen starke Schockwellen, die die elektrisch geladenen Teilchen in den Düsenstrahlen noch weiter beschleunigen, bis sie schließlich fast so schnell sind wie das Licht. Hierauf folgt dann ein stetiger, starker Energieverlust, der die Teilchen entsprechend wieder langsamer werden lässt. Dabei hinterlassen sie eine Art "Bremsspur", die zunächst aus sichtbarem Licht, dann aus Infrarotstrahlung und schließlich, wenn sie schon stark abgebremst wurden, aus energieärmeren Radiowellen besteht.

Diese Radiowellen entstehen in sehr hoher Intensität und werden im Radioteleskop als helle Flecken, so genannte ’Hot Spots’ (englisch für ’Heiße Flecken’), sichtbar. Die Strahlung, die zu Beginn der "Bremsspur" entsteht, war bislang nur in wenigen Fällen nachzuweisen - und dann meist in sehr schlechter Auflösung. Das ist den drei Astronomen Almudena Prieto, Gianfranco Brunetti und Karl-Heinz Mack nun erheblich besser gelungen: Durch lange Belichtungszeiten der Radiogalaxie 3C445 mit dem Very Large Telescope der Europäischen Südsternwarte in Chile konnten sie "Bremsstrahlung" im Infrarot- und optischen Bereich nachweisen und ihre Ursprungsregionen auflösen - "eine echte Überraschung", wie Professor Dr. Uli Klein vom Radioastronomischen Institut der Universität Bonn kommentiert. Damit konnten die Wissenschaftler erstmals exakt lokalisieren, wo die Schockbeschleunigung und der nachfolgende Energieverlust der relativistischen Teilchen in den Düsenstrahlen einsetzen.

Da die Forscher so den Beginn der "Bremsspur" genauer orten konnten, wissen sie nun auch genauer, in welchem Bereich die enorme Beschleunigung stattfindet: In einem etwa 15.000 Lichtjahre großen Gebiet jenseits des ersten "Überschallknalls" werden die Teilchen energetisch immer weiter "hochgeschaukelt". "Dort scheint es zu starken Turbulenzen zu kommen, mit deren Hilfe die Beschleunigung stattfindet", erklärt Dr. Mack, der momentan zu einem Forschungsaufenthalt in Bologna weilt. "Diese wiederum entstehen anscheinend durch die Düsenstrahlen selbst, während sie sich in das intergalaktische Medium ’bohren’." Die Entdeckung der drei Astrophysiker hat insofern weitreichende Konsequenzen für die Interpretation der Radiogalaxien.

Ansprechpartner:
Professor Dr. Uli Klein
Radioastronomisches Institut der Universität Bonn
Telefon: 0228/73-3674
uklein@astro.uni-bonn.de

oder Dr. Karl-Heinz Mack
Telefon: 0039/051-6399373
E-Mail: kmack@astro.uni-bonn.de
mack@ira.cnr.it

Frank Luerweg | idw

Weitere Berichte zu: Astrophysik Düsenstrahl Lichtjahr Radiogalaxien Radiowelle Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics