Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Astronomen lokalisieren galaktischen Teilchenbeschleuniger

11.10.2002


Radiogalaxien zählen zu den leuchtstärksten Himmelsobjekten - nur strahlen sie nicht Licht ab, sondern hauptsächlich Radiowellen. Diese entstehen, wenn elektrisch geladene Teilchen, die nahezu mit Lichtgeschwindigkeit unterwegs sind, abgebremst werden und dadurch Energie verlieren


Wo genau die Partikel auf dermaßen hohe Geschwindigkeiten kommen, war bislang unbekannt. Eine Gruppe von Wissenschaftlern - darunter auch ein Astrophysiker der Universität Bonn - konnte nun erstmals die Region genauer bestimmen, in der die Teilchen beschleunigt werden. Ihre Ergebnisse haben sie jetzt in der Oktober-Ausgabe der renommierten Wissenschaftszeitschrift Science veröffentlicht.

Sie sind die Giganten des Alls: Radiogalaxien zählen zu den größten Einzelobjekten im Universum. Außerdem sind sie monströse Sender: Sie emittieren Radiowellen, die noch in Millionen von Lichtjahren Entfernung in modernen Radioteleskopen sichtbar gemacht werden können. Dabei handelt es sich um so genannte Synchrotronstrahlung, die im Kosmos immer dann entsteht, wenn relativistische Teilchen - das sind solche, die sich annähernd mit Lichtgeschwindigkeit bewegen - auf ein Magnetfeld treffen und dabei abgelenkt werden.


Wo genau diese Partikel dermaßen beschleunigt werden, haben nun erstmals Astrophysiker unter Beteiligung des Wissenschaftlers Dr. Karl-Heinz Mack vom Bonner Radioastronomischen Institut feststellen können. In den Zentren vieler Radiogalaxien befinden sich wahrscheinlich riesige Schwarze Löcher, so schwer wie einige Milliarden Sonnen. Sie erzeugen zwei in entgegengesetzte Richtung laufende Düsenstrahlen aus sehr schnellen Elektronen - wie genau das vor sich geht, ist noch unbekannt. Diese Strahlen bewegen sich mit hoher Geschwindigkeit einige 100.000 Lichtjahre weit in den intergalaktischen Raum. Ähnlich wie ein Flugzeug die Luft vor seinem Bug verdichtet, schieben sie dabei die sehr dünn verteilte Materie vor sich her. Und ganz ähnlich wie bei einem Überschall-Flieger kommt es schließlich zum großen Knall: Es entstehen starke Schockwellen, die die elektrisch geladenen Teilchen in den Düsenstrahlen noch weiter beschleunigen, bis sie schließlich fast so schnell sind wie das Licht. Hierauf folgt dann ein stetiger, starker Energieverlust, der die Teilchen entsprechend wieder langsamer werden lässt. Dabei hinterlassen sie eine Art "Bremsspur", die zunächst aus sichtbarem Licht, dann aus Infrarotstrahlung und schließlich, wenn sie schon stark abgebremst wurden, aus energieärmeren Radiowellen besteht.

Diese Radiowellen entstehen in sehr hoher Intensität und werden im Radioteleskop als helle Flecken, so genannte ’Hot Spots’ (englisch für ’Heiße Flecken’), sichtbar. Die Strahlung, die zu Beginn der "Bremsspur" entsteht, war bislang nur in wenigen Fällen nachzuweisen - und dann meist in sehr schlechter Auflösung. Das ist den drei Astronomen Almudena Prieto, Gianfranco Brunetti und Karl-Heinz Mack nun erheblich besser gelungen: Durch lange Belichtungszeiten der Radiogalaxie 3C445 mit dem Very Large Telescope der Europäischen Südsternwarte in Chile konnten sie "Bremsstrahlung" im Infrarot- und optischen Bereich nachweisen und ihre Ursprungsregionen auflösen - "eine echte Überraschung", wie Professor Dr. Uli Klein vom Radioastronomischen Institut der Universität Bonn kommentiert. Damit konnten die Wissenschaftler erstmals exakt lokalisieren, wo die Schockbeschleunigung und der nachfolgende Energieverlust der relativistischen Teilchen in den Düsenstrahlen einsetzen.

Da die Forscher so den Beginn der "Bremsspur" genauer orten konnten, wissen sie nun auch genauer, in welchem Bereich die enorme Beschleunigung stattfindet: In einem etwa 15.000 Lichtjahre großen Gebiet jenseits des ersten "Überschallknalls" werden die Teilchen energetisch immer weiter "hochgeschaukelt". "Dort scheint es zu starken Turbulenzen zu kommen, mit deren Hilfe die Beschleunigung stattfindet", erklärt Dr. Mack, der momentan zu einem Forschungsaufenthalt in Bologna weilt. "Diese wiederum entstehen anscheinend durch die Düsenstrahlen selbst, während sie sich in das intergalaktische Medium ’bohren’." Die Entdeckung der drei Astrophysiker hat insofern weitreichende Konsequenzen für die Interpretation der Radiogalaxien.

Ansprechpartner:
Professor Dr. Uli Klein
Radioastronomisches Institut der Universität Bonn
Telefon: 0228/73-3674
uklein@astro.uni-bonn.de

oder Dr. Karl-Heinz Mack
Telefon: 0039/051-6399373
E-Mail: kmack@astro.uni-bonn.de
mack@ira.cnr.it

Frank Luerweg | idw

Weitere Berichte zu: Astrophysik Düsenstrahl Lichtjahr Radiogalaxien Radiowelle Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie