Durchbruch beim Stromtransport in Hochtemperatur-Supraleitern

Durch Optimierung der Korngrenzen in Supraleitungskeramik gelingt Physikern aus Augsburg und Twente eine Versechsfachung der kritischen Stromdichte

Physikern der Universitäten Augsburg und Twente (Niederlande) ist es gelungen, die Stromtragfähigkeit von Hochtemperatur-Supraleitern (HTS) wesentlich zu verbessern. Wie ein Beitrag der Wissenschaftler in der heute erscheinenden Ausgabe von „Nature“ ausführlich darlegt, lässt sich durch die von der deutsch-niederländischen Forschergruppe erzielte Optimierung der elektronischen Eigenschaften der Korngrenzen innerhalb von HTS-Kabeln eine Stromdichte erreichen, die unter den Bedingungen einer von technischen und ökonomischen Gesichtspunkten vorgegebenen Atbeitstemperatur den rentablen Einsatz entsprechender Kabel in vielen Anwendungsbereichen ermöglichen wird.

Supraleiter vermögen elektrischen Strom verlustfrei zu transportieren. Die Realisierung entsprechender Kabel schien bereits 1986 in greifbare Nähe gerückt, nachdem J. G. Bednorz und K. A. Müller Supraleitung, verlustfreien Stromtransport also, in Kupferoxiden entdeckt hatten. Im Gegensatz zu den supraleitenden Materialien, die bis dahin bekannt gewesen waren, handelt es sich bei diesen Kupferoxiden um Keramiken, die – daher der Name Hochtemperatur-Supraleiter – noch bei den relativ hohen Temperaturen von bis zu – 138° C supraleitend sind. Und diese Temperaturen lassen sich – im Gegensatz zu den Tiefsttemperaturen, bei denen „normale“ Supraleiter verlustfreien Stromtransport ermöglichen – technisch verhältnismäßig leicht durch Kühlung mittels flüssigem Stickstoff erreichen.

Trotz intensiver weltweiter Bemühungen erwies sich bisher die Herstellung wettbewerbsfähiger supraleitender Drähte aus Hochtemperatur-Supraleitern dennoch als außerordentlich schwierig. Der Hauptgrund hierfür wurde schon früh erkannt: Die keramischen Drähte bestehen herstellungsbedingt aus einzelnen mikroskopisch kleinen Körnern, die für sich genommen den Strom gut transportieren können. Allerdings muss in einem Kabel der Strom auch von Korn zu Korn fließen. Die Stromtragefähigkeit der Berührungsflächen der Körner – der Korngrenzen also – ist jedoch um ein Vielfaches geringer als die der Körner selbst. Um diese sogenannte kritische Stromdichte zu erhöhen, wurde bisher mit kostspieligen Prozessen versucht, die Körner parallel zueinander auszurichten, da sich hiermit die Eigenschaften der Korngrenzen verbessern lassen.

Mit einem völlig neuartigen Ansatz ist jetzt einer internationalen Arbeitsgruppe am Institut für Physik der Universität Augsburg ein Durchbruch auf diesem Arbeitsgebiet gelungen. In der jüngsten Ausgabe von „Nature“ (Vol. 407, S. 162-164, 14. September 2000) zeigen G. Hammerl und Kollegen, dass sich die Korngrenzen entscheidend verbessern lassen, wenn ihre elektronische Struktur, ähnlich wie dies aus der Halbleitertechnik bekannt ist, gezielt mit Dotierstoffen (z. B. mit Kalzium) optimiert wird. Besonders hilfreich ist hierbei die Verwendung geschichteter Supraleiter, die abwechselnd aus dotierten und undotierten Lagen bestehen. Unter Verwendung solcher Vielfachschichten konnte die kritische Stromdichte der Korngrenzen bei – 196° C, der gewünschten Arbeitstemperatur der supraleitenden Drähte, auf mehrere hunderttausend Ampere pro Quadratzentimeter versechsfacht werden. Da dieser Prozess sowohl preisgünstig als auch kompatibel mit den bisher entwickelten Verfahren zur Drahtherstellung ist, lässt sich ein großes Anwendungspotential dieser Technik erwarten.

Für Rückfragen und weitere Auskünfte:

Prof. Dr. Jochen Mannhart
Lehrstuhl für Experimentalphysik VI/EKM
Institut für Physik der Universität Augsburg
86135 Augsburg
Telefon 0821/598-3650, Fax 0821/598-3652
e-mail: jochen.mannhart@physik.uni-augsburg.de

Weitere Informationen finden Sie im WWW:

Media Contact

Klaus P. Prem

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Weltweit erster Linienscanner

…mit monolithisch-integrierten Terahertz-Detektoren für industrielle Anwendungen. Das Ferdinand-Braun-Institut hat einen Terahertz-Linienscanner für Kunststoff-Bauteile entwickelt, mit dem sich auch größere Scanlinienlängen im industriellen Umfeld kostengünstig realisieren lassen. Der Technologiedemonstrator basiert erstmals…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer