Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals gemessen: die Reibung zwischen einzelnen Atomen

04.09.2002


Erläuterung zur Illustration von Alexander Herrnberger im Text


Augsburger Physiker ermöglichen mit neuartiger Frequenzmodulations-Lateralkraftmikroskopie Einblick in die atomare Natur der Reibung --


Wissenschaftlern am Augsburger Lehrstuhl für Experimentalphysik VI/Elektronische Korrelationen und Magnetismus (Prof. Dr. Jochen Mannhart) ist es gelungen, erstmals die Reibung zwischen einzelnen Atomen zu messen. Priv. Doz. Dr. Franz Gießibl und Kollegen berichten über diesen wissenschaftlichen Erfolg im Artikel Nr. 1605 der aktuellen Ausgabe der US-amerikanischen Zeitschrift "Proceedings of the National Academy of Sciences" (PNAS)*. Mit der neuen rasterkraftmikroskopischen Technik kann künftig nicht nur die Reibung detaillierter studiert werden; vielmehr eröffnet sich hier auch ein Weg zu einem besseren, insbesondere für die Nanotechnologie wichtigen Verständnis der Bindungsverhältnisse von Oberflächenatomen.


Reibung ist ein Alltagsphänomen: Schiebt man einen Stuhl über den Fußboden, muss man dazu Energie aufwenden. Auf mikroskopischer Skala betrachtet ist dies ein großes Rätsel, denn die Kräfte zwischen den Bestandteilen des Stuhls und des Fußbodens, zwischen den einzelnen Atomen also, sind konservativ. "Konservativ" bedeutet in diesem Zusammenhang, dass man die Energie, die man aufwenden muss, wenn man zwei aneinander gebundene Atome auseinander zieht, zurück bekommt, wenn man deren Abstand wieder verringert. Auf die Welt im Großen übertragen würde das heißen, dass man den Stuhl zuerst zwar anschieben muss, um ihn zu verschieben, dass er dann aber, wenn er einmal angeschoben ist, eigentlich ungebremst weiterrutschen müsste.


ATOMARE REIBUNG: 1929 ERSTMALS BESCHRIEBEN ...

Weshalb dies nicht so ist - den Mechanismus also, aus dem sich atomare Reibung ergibt - hat G. A. Tomlinson bereits im Jahr 1929 beschrieben, und zwar als das "gegenseitige Anzupfen einzelner Oberflächenatome", wenn diese durch laterale Kräfte ausgelenkt werden und wieder in ihre Ruhelagen "zurückschnalzen". Reibung ist dabei entstehende Energiedissipation: der durch die Umwandlung der aufgewandten Energie in Wärme verursachte Verlust an mechanisch nutzbarer Energie. Diesen Mechanismus kann man in der Makrowelt nachbilden: Spannt man die Saite einer Gitarre, so muss man dazu über die Wegstrecke der Saitenauslenkung eine Kraft ausüben und damit Energie aufwenden. Wenn man die Saite langsam zurückbewegt, bleibt die gespeicherte Energie mechanisch nutzbar - man könnte zum Beispiel ein Gewicht damit hochheben. Falls die Saite beim Spannen aber entwischt, ist die aufgewandte Energie nicht mehr mechanisch nutzbar - sie wird als Schall abgestrahlt und letztlich in Wärme verwandelt.

... UND 2002 ERSTMALS EXPERIMENTELL NACHGEWIESEN UND GEMESSEN

Die Messungen der Augsburger Physiker sind nun der erste experimentelle Nachweis dieses vor gut 70 Jahren erstmals beschriebenen Mechanismus, der atomare Reibung verursacht. Mit Experimenten an einem neuartigen Rasterkraftmikroskop ist es Gießibl und Kollegen gelungen zu zeigen, dass der Energieverlust und damit die Reibung dann auftritt, wenn zwei Atome so weit auseinandergezogen werden, dass deren maximale Haftkraft überschritten wird. Die Atome "schnalzen" dann in ihre Ausgangslage zurück, wo sie mit einer Frequenz von Tera-Hertz (1 000 000 000 000 Schwingungen pro Sekunde) oszillieren und die gespeicherte Energie in Form von Wärme an ihre Umgebung abgeben. Dieser "Tomlinson"-Mechanismus ist der wesentliche für Reibung verantwortliche Effekt. Daneben gibt es noch kleinere Beiträge zur Reibungskraft, z. B. elektronische Effekte.

FREQUENZMODULATIONS-LATERALKRAFTMIKROSKOPIE

Um die Reibungskraft zwischen einer Wolframspitze und einer Siliziumoberfläche zu messen, benutzten die Augsburger Physiker die Frequenzmodulations-Lateralkraftmikroskopie, eine spezielle Variante der Rasterkraftmikroskopie. Die Rasterkraftmikroskopie nutzt stets einen empfindlichen Federbalken mit einer atomar scharfen Spitze, um die Kräfte zwischen dem Spitzenatom und einer Oberfläche zu messen. Bei der Frequenzmodulations-Lateralkraftmikroskopie wird die Spitze, die mit konstanter Amplitude parallel zu einer Oberfläche schwingt, über diese Oberfläche gerastert. Der Reibungsverlust zwischen Spitzen- und Probenatom entspricht der einfach zu messenden Energie, die zur Aufrechterhaltung einer konstanten Amplitude nötig ist.

_______________________________________________________

ZUR ILLUSTRATION:

Der Elementarprozess der Reibung wird mit einem neuartigen Rasterkraftmikroskop studiert. Eine scharfe Spitze, die mit konstanter Amplitude parallel zu einer Siliziumoberfläche schwingt, wird über eine Oberfläche gerastert. Weil die Spitze an den Umkehrpunkten die höchste Aufenthaltswahrscheinlichkeit aufweist, erscheint jedes Atom als Doppelhöcker. Die zur Aufrechterhaltung einer konstanten Amplitude nötige Energie kann einfach gemessen werden und entspricht dem Reibungsverlust zwischen Spitzen- und Probenatom.
_______________________________________________________

KONTAKT UND WEITERE INFORMATIONEN:

Lehrstuhl für Experimentalphysik VI/EKM, Universität Augsburg, 86135 Augsburg,
o PRIV. DOZ. DR. FRANZ J. GIESSIBL,
Telefon: +49-821-598-3675, Telefax.: +49-821-598-3652
E-Mail: franz.giessibl@physik.uni-augsburg.de
o PROF. DR. JOCHEN MANNHART
Telefon: +49-821-598-3651, Telefax.: +49-821-598-3652
E-Mail: jochen.mannhart@physik.uni-augsburg.de
_______________________________________________________

*) Der Artikel ist unter dem Titel "FRICTION TRACED TO THE SINGLE ATOM" BY FRANZ J. GIESSIBL, MARKUS HERZ, AND JOCHEN MANNHART, UNIVERSITAT AUGSBURG am 27. August 2002 in PNAS Online (Abstract: http://www.pnas.org/cgi/content/abstract/182160599v1) erschienen. Proceedings of the National Academy of Sciences (PNAS) ist eine der weltweit am häufigsten zitierten multidisziplinären Wissenschaftszeitschriften. PNAS erscheint 14-tägig als Print-Version und täglich in einer Online-Ausgabe ( http://www.pnas.org )

Klaus P. Prem | idw
Weitere Informationen:
http://www.pnas.org/cgi/content/abstract/182160599v1
http://www.pnas.org/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Hauch von Galaxien im Zentrum eines gigantischen Galaxienhaufens
21.08.2017 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik