Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserphysik: Durchbruch nach Feierabend

08.06.2000

 

Marburger und Frankfurter Physikern gelingt vermeintlich aussichtsloses Grundlagenexperiment

Einem Team von Physikern der Universitäten Marburg und Frankfurt am Main ist ein wichtiges Grundlagenexperiment zum Verhalten von Atomen in extrem starken Laserlicht gelungen. Das berichtet die Zeitschrift "Nature" in ihrer Ausgabe vom 8. Juni. Besonders bemerkenswert erscheint diese Leistung, weil beide Arbeitsgruppen eigentlich auf anderen Gebieten arbeiten und während ihrer Freizeit ein Experiment wagten, das Fachleute für aussichtslos gehalten hätten.

Atome verlieren unter Energiezufuhr einzelne Elektronen - ein Prozess, der in jeder Kerzenflamme oder Leuchtstoffröhre zu beobachten ist. "Normalerweise liegt uns Atomphysik fern", sagt der Marburger Physiker Dr. Harald Giessen von seiner Arbeitsgruppe. Sie erforscht Halbleiter und Polymere und betreibt in diesem Zusammenhang auch ein Laser-Labor. Auf einer Konferenz über ultraschnelle Laser hörte er dann jedoch den Vortrag eines theoretischen Physikers aus Kanada darüber, dass Atome unter extrem starkem Laserlicht viel häufiger als erwartet ihre Elektronen gleich paarweise verlieren. Um den Mechanismus zu verstehen, müsste man Energiedichten von etwa 1 Billiarde Watt pro Quadratzentimeter erreichen, spekulierte der Theoretiker. Am Lawrence Livermore Laboratorium, wo im Rahmen der US-amerikanischen Rüstungsforschung die stärksten Laser der Welt unterhalten werden, hatte man vergeblich versucht, dieses Experiment durchzuführen. Harald Giessen überschlug die Zahlen auf einem Fetzen Papier und kam zu einem Ergebnis, das ihn selbst verblüffte: Mit seinem Marburger Laser müsste es möglich sein, die für das atom-physikalische Grundlagenexperiment notwendige Energiedichte zu erreichen.

Der Titan-Saphir-Laser im Marburger Halbleiterlabor, finanziert aus Mitteln des Landes Hessens, kann sich nicht im entferntesten mit den gigantischen Lasermaschinen aus Livermore messen. Aber die Marburger Physiker beherrschen zwei Tricks konkurrenzlos gut: Sie können extrem kurze Laserpulse vom Hundertausendstel einer Milliardstel Sekunde Dauer erzeugen und damit die Energie eines Pulses zeitlich um den Faktor eine Million konzentrieren. Und sie können das Laserlicht auf eine so kleine Fläche fokussieren, dass sie damit gleich mehrere Löcher nebeneinander auf eine Haaresbreite brennen könnten, was die Energiedichte im Vergleich zu Konkurrenzgruppen noch einmal um den Faktor 100 steigert. In der Summe können also so Energiedichten erzeugt werden, die 100 Millionen mal größer sind als bei der Konkurrenz, so dass sogar der von dem Theoretiker geforderte Wert erreichbar schien, auch wenn der Marburger Laser in einem Wohnzimmer Platz fände.

Früher hatte man geglaubt, dass Atome auch bei Bestrahlung mit extrem starkem Laserlicht die Elektronen nacheinander verlieren, doch tatsächlich entreißt so ein Lichtblitz Argon-Atomen ihre beiden Elektronen gleich paarweise. Doch zuvor war noch ein zweites Problem zu lösen, denn Elektronen und verbliebene Restatome müssen auch nachgewiesen werden. Das beherrscht wiederum eine Arbeitsgruppe um Dr. Reinhard Dörner von der Universität Frankfurt konkurrenzlos gut. Die Frankfurter Physiker betreiben als einzige in Deutschland einen Detektor, der es erlaubt, gleichzeitig die Elektronenpaare sowie die positiv geladenen Atomreste aufzuspüren und so dem Zerplatzen eines einzelnen Argon-Atoms zuzuordnen. Die Frankfurter Detektorkammer ist überdies transportabel, so dass Giessen und Dörner außerhalb ihrer normalen Tätigkeit eine Zusammenarbeit verabredeten. Die Frankfurter brachten ihren Detektor auf einem Lkw nach Marburg, und in der unglaublich kurzen Zeit von nur sechs Wochen zogen sie die Versuche durch: "Wir haben in drei Schichten rund um die Uhr gearbeitet", berichtet Harald Giessen, denn jedes Einzelexperiment dauerte mehrere Tage, bis genügend zerplatzte Argon-Atome gezählt waren, um sie statistisch auswerten zu können.

Die Ergebnisse haben für Aufsehen in der Physiker-Gemeinde gesorgt: Nicht nur klappte ein für aussichtslos gehaltenes Experiment, es gelang auch noch einer Arbeitsgruppe, die gar nicht zu den etablierten Spielern auf dem Gebiet gehört. Der Lohn ist eine Veröffentlichung in "Nature", die in den Naturwissenschaften als die führende Zeitschrift gilt. Jetzt ist klar, warum viel häufiger als erwartet Elektronen von starkem Laserlicht gleich paarweise herausgerissen werden: Am besten stellt man sich die äußeren Elektronen des Argons als Stahlkugeln vor, die auf einem periodisch hin- und herschwankenden Tablett herumrollen. Das elektrische Feld des Laserlichts sorgt für eine zusätzliche Neigung des Tabletts. Bevor aber eine Stahlkugel endgültig herunterfallen kann, neigt sich das Tablett schon wieder zur anderen Seite, und die Kugel rollt zurück. Dabei kann sie auf eine zweite Kugel stoßen, und beide fliegen gemeinsam vom Tablett herunter.

Giessen und Dörner, der jetzt an der Universität Freiburg arbeitet, haben inzwischen auch noch einen zweiten Beleg für diese Modellvorstellung erbringen können. Es ist ihnen gelungen, die Intensität des Laserlichts weiter zu steigern. Auf das Tablett übertragen heißt das, dass es so stark geneigt wird, dass einige Kugeln unkoordiniert schon beim ersten Kippen vom Tablett fallen. Und tatsächlich haben sie messen können, dass Elektronen dann unabhängig voneinander aus den Argon-Atomen gerissen werden. Voraussetzung für den unglaublichen Erfolg ist die hervorragende Geräteausstattung, die durch einen Sonderforschungsbereich in Marburg gegeben ist, eine Portion Dreistigkeit, Begeisterung für Physik selbst noch nach Feierabend und ein Chef (Professor Wolfgang Rühle), der seinen Mitarbeitern die Freiheit gibt, auch einmal über den Tellerrand zu blicken.

Kontakt:

Dr. Harald Giessen


Ein Elektron wird zunächst befreit, dann

aber vom Laserlicht zurück in Richtung auf das Atom beschleunigt. Es

trifft auf ein zweites Elektron und beide fliegen gemeinsam davon.

(Grafik: Giessen)


Fachbereich Physik
Arbeitsgruppe Halbleiterphysik

... mehr zu:
»Laser »Laserlicht »Physik

Renthof 5
35032 Marburg
Telefon: 06421 / 28-22122

Fax: 06421 / 28-27036
E-Mail: harald.giessen@physik.uni-marburg.de

Weitere Informationen finden Sie im WWW:

Ulrich Thimm |

Weitere Berichte zu: Laser Laserlicht Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie