Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fermionen kommen nicht gern zusammen an

30.07.2002


Versuche von Hanbury Brown und Twiss mit Elektronen wiederholt - Tübinger Veröffentlichung in ’Nature’

... mehr zu:
»Fermionen »Hanbury »Photon

Die Physiker und Pioniere der Quantenoptik Robert Hanbury Brown und Richard Twiss machten im Jahre 1956 eine merkwürdige Entdeckung: Wenn von unterschiedlichen Orten eines Sterns, beispielsweise den gegenüberliegenden Rändern, jeweils ein Photon (Lichtteilchen) ausgestrahlt wird, verhalten sich die Teilchen, wie man es erwarten würde, zunächst unabhängig voneinander. Doch je weiter sich die Teilchen ausbreiten, desto stärker treten sie in Korrelation zueinander. Auf der Erde konnten die Physiker messen, dass zwei solcher Photonen sehr häufig genau gleichzeitig an einem Punkt zusammen ankamen - doppelt so häufig, wie das in einem entsprechenden Experiment mit Regentropfen der Fall gewesen wäre ("Bunching"). Damals erklärten viele Forscherkollegen die Entdeckung von Hanbury Brown und Twiss, dass zwei ursprünglich unkorrelierte Photonen an einem weit von der Quelle entfernten Punkt korreliert ankommen, für absurd. Doch inzwischen ist der Effekt unter Physikern längst als richtig anerkannt.

Dr. Harald Kiesel, Dipl.-Phys. Andreas Renz und Prof. Franz Hasselbach vom Institut für Angewandte Physik der Universität Tübingen haben die Versuche von Hanbury Brown und Twiss in einem entsprechenden Experiment mit freien Elektronen durchgeführt. Weltweit haben das mehrere Forschergruppen ebenfalls versucht. Doch den Tübinger Physikern ist es nun als ersten gelungen nachzuweisen, dass bei freien Elektronen eine entgegengesetzte Korrelation wie im Experiment von Hanbury Brown und Twiss bei Photonen auftritt. Wenn Elektronen unabhängig voneinander ausgestrahlt werden, finden sie im Gegensatz zu den Photonen auch in weiter Entfernung von der Elektronenquelle nicht zusammen, sondern meiden einander sogar. Die Ergebnisse der Tübinger Forscher sind auch in der Fachzeitschrift Nature vom 24. Juli 2002 (Band 418, Seite 392) veröffentlicht worden.


Zwischen Photonen und Elektronen besteht ein prinzipieller Unterschied. Sie bewegen sich nach unterschiedlichen Verteilungsstatistiken im Raum. Sowohl bei der Teilchengruppe der Bosonen, zu denen die Photonen zählen, als auch bei den Fermionen, zu denen die Elektronen gehören, kann es zu Überlagerungen der zugehörigen Wellen kommen. Von Physikern wird dieses Phänomen Interferenz genannt. Die Wellen können sich dabei gegenseitig verstärken oder auch auslöschen. Bei den Fermionen muss jedoch bei der Interferenz das Paulische Ausschlussprinzip, benannt nach dem Physiker Wolfgang Pauli, eingehalten werden. Dieses Prinzip besagt, dass sich zwei gleichartige Fermionen nicht im gleichen Zustand befinden können. Aus diesem Grund können zwei Elektronen nicht gleichzeitig ankommen. Die Tübinger Physiker nutzten die Spitze einer Wolframnadel als Elektronenquelle - in Analogie zu Hanbury Brown und Twiss, die einen Stern als Photonenquelle verwendeten. Mit ausgeklügelter Technik konnten die Tübinger die Ankunftszeiten der Elektronen an zwei Detektoren genau registrieren. Tatsächlich war nach ihren Messungen die Wahrscheinlichkeit sehr gering, dass zwei Elektronen extrem kurz nacheinander eintrafen ("Antibunching"-Effekt). Damit wird die Aussage der Quantenoptik bestätigt, dass der Elektronenstrom gleichmäßiger ist als der Photonenstrom in den Experimenten von Hanbury Brown und Twiss und sogar gleichmäßiger als ein Strom klassischer Teilchen (z.B. Regentropfen).

Doch die Forschungen gehen weiter: Hasselbach und seine Kollegen wollen eine polarisierte Elektronenquelle bauen, bei der die Elektronen aufgrund des von ihnen nachgewiesenen "Antibunching"-Effekts streng getrennt eins nach dem anderen ausgestrahlt werden. Dadurch kommen sich die Elektronen nicht so nahe, dass sie viel Energie austauschen könnten, die Energieverteilung des Elektronenstrahls bleibt somit schmal. Damit ließe sich die Auflösungsgrenze von Elektronenmikroskopen weiter verbessern. Noch kleinere Strukturen als bisher schon könnten sichtbar gemacht werden.

Nähere Informationen:
Prof. Franz Hasselbach
Institut für Angewandte Physik
Auf der Morgenstelle 10
72076 Tübingen
Tel. 0 70 71/2 97 63 28
Fax 0 7 071/29 50 93
E-Mail: franz.hasselbach@uni-tuebingen.de

Michael Seifert | idw

Weitere Berichte zu: Fermionen Hanbury Photon

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

nachricht Rotierende Rugbybälle unter den massereichsten Galaxien
23.05.2018 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics