Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auch der Planet Mars glimmt im Röntgenlicht

26.07.2002


Entdeckung mit dem Weltraum-Observatorium "Chandra" - Staubsturm ermöglicht einzigartigen Test

Bei einem weiteren Himmelskörper unseres Sonnensystems hat Dr. Konrad Dennerl, Max-Planck-Institut für extraterrestrische Physik, zum ersten Mal Röntgenstrahlung nachgewiesen: Der Planet Mars glimmt als nahezu gleichmäßig beleuchtete Scheibe im "weichen" Röntgenlicht des Energiebereichs zwischen 100 bis 1 000 Elektronen-Volt (eV). Zusätzlich wurden Anzeichen für einen "Halo" um den Mars gefunden. Dieser "Lichthof" sendet in Entfernungen bis zu drei Radien des Planeten ebenfalls - allerdings noch schwächere - Röntgenstrahlung aus. Das Ergebnis veröffentlicht der Max-Planck-Wissenschaftler in einer der nächsten Ausgaben der europäischen Fachzeitschrift "Astronomy & Astrophysics".

Erst vor kurzem hatte Dennerl auch vom Planeten Venus stammende Röntgenstrahlung gefunden (siehe auch MPG-Presseinformation 80/2001: "Röntgenblick auf die Venus"). Beide Entdeckungen gelangen mit dem amerikanischen Röntgenobservatorium "Chandra". Es arbeitet seit Juli 1999 im Weltraum.

Sowohl der Mars als auch die Venus leuchten, so erläutert Dennerl, "mit geliehener Röntgenstrahlung von der Sonne; ohne unser Zentralgestirn wäre alles finster". Wechselwirkungen mit dem energiereichen Anteil der Sonnenstrahlung, besonders in den oberen Schichten in mehr als 80 Kilometern Höhe der Atmosphären um die Planeten, lassen die beiden Himmelskörper im Röntgenbereich aufscheinen.

Das geschieht hauptsächlich durch Fluoreszenz: Die Röntgenstrahlung der Sonne reißt aus Atomen und Molekülen - vor allem Sauerstoff (O) und Kohlenstoff (C) der zu über 95 Prozent aus Kohlendioxid (CO2) bestehenden Gashüllen um die beiden Planeten - einzelne Elektronen heraus. Dieser angeregte Zustand besteht allerdings nur kurze Zeit. Sofort füllen Elektronen die Lücken wieder auf. Dadurch kehrt das Atom in seinen Grundzustand zurück und strahlt die überschüssige Energie ab - in Form der beobachteten Röntgenfluoreszenz.

"Foto: Das erste Röntgen-Bild des Planeten Mars, aufgenommen am 4. Juli 2001 mit dem amerikanischen "Chandra"-Weltraumobservatorium, wurde jetzt von Dr. Konrad Dennerl, Max-Planck-Institut für extraterrestrische Physik, Garching, ausgewertet" "Quelle: Max-Planck-Institut für extraterrestrische Physik"

Sie ist auf bestimmte Wellenlängen eng begrenzt und tritt somit in Form charakteristischer Spektrallinien in Erscheinung. Diese verraten - eindeutig wie Fingerabdrücke - die beteiligten chemischen Elemente. "Damit bietet die Röntgenfluoreszenzstrahlung eine neuartige Möglichkeit, die äußeren Atmosphären der beiden Planeten aus der Ferne zu erforschen", stellt Dr. Dennerl fest.

Den Mars hat "Chandra" am 4. Juli 2001 mehr als neun Stunden lang ins Visier genommen. Dort tobte zu dieser Zeit ein heftiger Sandsturm, der am 26. Juni begonnen hatte. Am 4. Juli hatte er etwa eine Hälfte des Planeten erfasst. Dies zeigten Messungen der Staubverteilung durch den um den Roten Planeten kreisenden Beobachtungssatelliten "Mars Global Surveyor". Aufgrund dieser besonderen "Wetterlage" bot sich die Gelegenheit zu einem einzigartigen Test. Eventuell könnten unsichtbare, weil mikroskopisch kleine (10-18 Gramm) Staubteilchen, die durch den Sturm bis in die obere Mars-Atmosphäre empor gewirbelt werden, als Reflektoren für die Röntgenstrahlung von der Sonne wirken. Die Streuung solarer Röntgenstrahlung an derart kleinen Staubpartikeln wird von manchen Wissenschaftlern als Ursache für die Röntgenstrahlung von Kometen angesehen.

Doch auch als sich das Gebiet des Sandsturms vor den Augen der Beobachter weggedreht hatte - der Mars rotiert ähnlich wie die Erde alle 24 Stunden einmal um seine Achse - blieb die Röntgenintensität gleich: Winzige Staubpartikel waren offenbar nicht in ausreichender Zahl in großer Höhe vorhanden, um die Röntgenstrahlung vom Mars messbar zu beeinflussen.

Die Röntgenstrahlung vom Mars ist außerordentlich gering: Unter rund 100 Milliarden optischen Photonen - für das menschliche Auge sichtbaren Lichtteilchen - befindet sich gerade mal ein Röntgenquant. Während der mehr als neunstündigen Beobachtung wurden mit "Chandra" insgesamt nur etwa 300 Röntgenquanten beobachtet.

Mit einem starken Filter musste deshalb der alles überstrahlende Anteil des sichtbaren Lichts im Röntgenteleskop des "Chandra"-Observatoriums unterdrückt werden. Das geringe Restlicht, das trotzdem noch auf den ACIS I-Detektor ("Advanced CCD Imaging-Spectrometer") gelangte, bewirkte offenbar durch Überlagerung der elektrischen Ladungen eine Verschiebung der im Spektrum des Röntgenlichts vom Mars vorherrschenden "Fluoreszenz-Linie" des Sauerstoffs von 530 auf 650 eV. Ähnliches hatte Dennerl mit demselben "Chandra"-Detektor auch bei der von der Venus stammenden Röntgenstrahlung beobachtet.

Beim Mars hat der Max-Planck-Forscher außerdem eine zweite - wenn auch wesentlich schwächere - Quelle für Röntgenstrahlung entdeckt. Sie erleuchtet einen vom Rand bis zu drei Radien des Planeten in den Weltraum hinausreichenden Bereich. Eine Untersuchung dieser Strahlung ist aufgrund der sehr geringen Intensität nur eingeschränkt möglich. Es gibt jedoch eine naheliegende Erklärung für ihre Ursache: Hier sind es vor allem Wasserstoff- und Sauerstoff-Atome, die aus der oberen Marsatmosphäre ins All entweichen können (und wahrscheinlich die Ursache für das vom Roten Planeten "verschwundene" Wasser sind). Sie geraten mit dem Sonnenwind aneinander - jener Strömung elektrisch geladener Teilchen (Ionen), die von der Sonne ständig weggeschleudert werden.

Beim Aufeinandertreffen der stark geladenen Ionen des Sonnenwinds mit den flüchtigen, elektrisch neutralen Mars-Atomen kommt es zu komplizierten Umladungsprozessen. Dabei verlieren die Mars-Atome Elektronen an die Sonnenwind-Ionen. Diese geraten dadurch in einen hochangeregten Zustand und strahlen einen Teil ihrer Anregungsenergie im Röntgenbereich ab.

Solche Prozesse lassen auch Kometen im Röntgenlicht erstrahlen. An der Entdeckung dieses Phänomens zuerst beim Kometen "Hyakutake" mit dem deutschen Röntgensatelliten "Rosat" im Jahr 1996 war Dr. Dennerl als Mitglied des deutsch-amerikanischen Forscher-Teams maßgeblich beteiligt (siehe auch MPG-Presseinformation 6/96: online nicht verfügbar). Dieser erste Nachweis der Röntgenstrahlung von einem Kometen galt damals als wissenschaftliche Sensation: Denn die Entstehung von Röntgenstrahlung, so die bis dahin allgemein anerkannte Auffassung, erfordere Temperaturen von mindesten einer Million Grad. Kometen hingegen sind kalte Objekte, "schmutzige Schneebälle".

Inzwischen ist Röntgenstrahlung zu einem charakteristischen Merkmal sonnennaher Kometen geworden (und Dr. Dennerl bereitet derzeit Veröffentlichungen über drei neue Röntgenbeobachtungen dieser Objekte vor). Das hat den Max-Planck-Wissenschaftler ermutigt, in unserem Sonnensystem nach weiteren "kühlen" Röntgenstrahlern zu fahnden - mit Erfolg, wie Venus und Mars zeigen. Neben der Sonne (erster Nachweis im Jahr 1951) sind damit die Erde (1968), der Erd-Mond (1974), der Jupiter (1983), bisher mindestens 14 Kometen (ab 1996), möglicherweise auch der Saturn (2000) sowie die Jupiter-Monde Io und Europa ebenso wie der Plasma-Ring um Io (2002), und jetzt auch Venus und Mars in unserem Sonnensystem als Quellen für Röntgenstrahlung erkannt.

Weitere Informationen erhalten Sie von:

Dr. Konrad Dennerl
Max-Planck-Institut für extraterrestrische Physik, Garching Tel.: 089 - 30 000-38 62
Fax: 089 - 30 000-35 69
E-Mail: kod@mpe.mpg.de

Dr. Bernd Wirsing | Presseinformation

Weitere Berichte zu: Komet Planet Röntgenlicht Röntgenstrahl

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte