Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker der TU München weisen gefährliche innere Spannungen in großen Verdichtern nach

28.07.2008
Verdichterräder in Turbinen müssen einiges aushalten: Sie bringen große Mengen an Gasen oder Flüssigkeiten auf hohen Druck, und gleichzeitig zerren an ihnen extreme Fliehkräfte.

Bricht ein Verdichterrad infolge Materialermüdung, kann dies die gesamte Turbine zerstören. Für die Hersteller ist es daher von großem Interesse, Belastungsgrenzen von Bauteilen voraus berechnen zu können.

Allerdings müssen die Ergebnisse solcher Berechnungen auch in der Realität geprüft werden. Ein solches Prüfverfahren haben nun Physiker an der Forschungsneutronenquelle FRM II der TU München entwickelt. Mit ihrem Instrument STRESS-SPEC können sie auch tief in großen Bauteilen versteckte, innere Spannungen nachweisen.

Auf der Suche nach wirtschaftlichen und Energie effizienten Werkstoffen, Designs und Verfahren entwickeln Wissenschaft und Technik immer bessere Materialien und Hochleistungskomponenten. Auch die Leistungspotenziale bereits im Einsatz befindlicher Materialien werden weiter ausgereizt. Die direkte, zerstörungsfreie Untersuchung der bei Herstellung und Weiterverarbeitung entstehenden inneren Strukturen ist dabei von entscheidender Bedeutung. "Viele Methoden der Materialforschung schauen nur auf die Oberfläche," sagt Winfried Petry, wissenschaftlicher Direktor der Neutronenquelle FRM II der TU München. "Mit der Neutronenstreuung haben wir ein Instrument, auch tief ins Innere von Materialien zu schauen. Die daraus erwachsenden Erkenntnisse sind von enormer wirtschaftlicher Bedeutung."

... mehr zu:
»FRM »Physik »STRESS-SPEC

Ausgangspunkt der Untersuchung von Verdichtern war ein Streit zwischen Theoretikern und Ingenieuren: Ein Turbinenhersteller hatte die mathematische Modellierung des Herstellungsprozesses für große Verdichterräder in Auftrag gegeben. Diese werden aus einem fast 300 kg schweren Metallrohling heraus gefräst. Bei ihrer Simulation fiel den Theoretikern auf, dass der Herstellungsprozess im Inneren des Blocks erhebliche mechanische Spannungen verursachen müsste. Solche inneren Spannungen können zu Materialermüdung und Rissbildung führen, dem vorzeitigen Ende des Bauteils. Die Ingenieure glaubten nicht an die Existenz solcher Spannungen. Leider gab es keine Methode, mit der der Streit hätte entschieden werden können - bis das Unternehmen auf das Untersuchungsinstrument STRESS-SPEC des FRM II aufmerksam wurde.

Für die Wissenschaftler des FRM II stellte der Auftrag eine erhebliche Herausforderung dar: Nie zuvor war ein so großes Bauteil vermessen worden. Der Messplatz musste extra umgebaut werden, um ein so großes Bauteil vor dem Neutronenstrahl auf den Mikrometer exakt positionieren und für Messreihen definiert verschieben zu können. Doch dann konnte Michael Hofmann, Physiker der TU München und Leiter des Instruments STRESS-SPEC, mit seinem Team den Streit schnell beenden: Eindeutig zeigten die Messungen, dass im Inneren des Bauteils erhebliche mechanische Spannungen vorhanden waren. Die Theoretiker hatten also Recht gehabt. Nun sind die Ingenieure dabei, den Herstellungsprozess so verändern, dass keine oder nur minimale Spannungen entstehen. Dies erhöht die Lebensdauer des Bauteils und damit die Wirtschaftlichkeit weil die Intervalle zwischen den kostenintensiven Wartungspausen verlängert werden können.

Die Neutronenstrahl-Experimente der Physiker haben aber noch einen viel weiter reichenden Effekt: Mit ihren Messungen bestätigen sie die Modelle der Materialwissenschaftler. Diese können ihre Methoden mit den Messdaten nun weiter verfeinern und auf andere Werkstücke und Materialien übertragen. "Wir betreiben hier hoch aktuelle Grundlagenforschung," bestätigt Michael Hofmann. "Wenn die Modelle sehr realitätsnah sind, dann spart die computergestützte Materialwissenschaft massiv Entwicklungskosten ein, denn am Computer-Modell können viele Variationen in kurzer Zeit durchgespielt werden. Den Realitätstest liefern wir mit unserem Neutronen-Diffraktometer STRESS-SPEC."

Nur mit Neutronen können die Wissenschaftler die Spannungen tief im Inneren massiver Bauteile aufspüren: Da sie nicht elektrisch geladen sind, fliegen die Winzlinge durch viele Materialien so ungehindert hindurch, wie Lichtteilchen durch Glas. Nur ab und zu stößt ein Neutron mit einem Atomkern des Materials zusammen, verliert etwas Energie und wird aus der Bahn geworfen. Die Richtungsänderung und der Energieverlust sagen viel über den Unfallgegner und die nähere Umgebung des Unfallortes aus. Spannungen verraten sich dadurch, dass die Atome um einen kleinen Betrag aus ihrer Idealposition heraus gezogen sind. "Mit unserer Messgenauigkeit sind wir hier schon im Picometer-Bereich, also noch mal um einen Faktor 1000 kleiner als ein Nanometer," erläutert Prof. Winfried Petry, wissenschaftlicher Direktor der Neutronenquelle.

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.frm2.tum.de

Weitere Berichte zu: FRM Physik STRESS-SPEC

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie