Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Galaxienherz durch die Staubbrille betrachtet

24.07.2008
Max-Planck-Forscher beobachten erstmals Materiescheiben in aktiven Sternsystemen

Dass sie existieren, beweist die extrem starke Strahlung, die sie aussenden. So tief ins Innere hineinschauen konnten Astronomen jedoch bisher nicht in aktive Galaxien. Denn sie verbergen sich in einem Meer aus Staubwolken. Im Inneren vermutete man Schwarze Löcher, die Gas und Sterne aus ihrer Umgebung einsaugen.

Die eingesammelte Materie kreist dann in der so genannten Akkretionsscheibe um den Kern und sendet den größten Anteil der Strahlung der Galaxie aus. Bis vor kurzem nur in der Theorie belegt, konnte eine solche Scheibe erstmals direkt beobachtet werden. Dazu hat ein internationales Team von Astronomen unter der Leitung von Makoto Kishimoto vom Bonner Max-Planck-Institut für Radioastronomie nun eine geschickte Methode gefunden. Mit einem Polarisationsfilter haben die Forscher die störende Strahlung der Staubwolken ausgeblendet und das vorausgesagte Spektrum der Akkretionsscheibe experimentell bestätigt. (Nature, 24. Juli 2008)

Will man ein Foto mit kräftigen Farben schießen oder sich beim Autofahren nicht von spiegelnden Fensterscheiben blenden lassen, greift man vielleicht zu einem Polarisationsfilter. Man setzt ihn vor das Kamera-Objektiv oder als Brille auf die Nase. Nur zur Beobachtung von aktiven Galaxien hat sie bis jetzt noch niemand eingesetzt. Genau diese Idee hatte das internationale Forscherteam um Makoto Kishimoto vom Max-Planck-Institut für Radioastronomie.

Mit diesem Trick ist es den Physikern gelungen, Quasare, die stark leuchtenden Kernbereiche von weit entfernten Galaxien, unverfälscht zu beobachten. Die massereichen Schwarzen Löcher in ihrem Zentrum strahlen mit einer Energie, die diejenige der Sonne um ein Billionenfaches übertrifft. Die mächtigen Kraftquellen werden dabei angetrieben durch interstellares Gas, das in Form sogenannter Akkretionsscheiben aus der Umgebung direkt in das Schwarze Loch eingesogen wird.
... mehr zu:
»Radioastronomie »Staubwolke

Bislang war es nicht möglich, diese Umgebung direkt zu untersuchen, denn sie befindet sich in dichten Staubwolken. Die starke Strahlung dieser Wolken verfälscht das gesuchte Spektrum der Akkretionsscheibe. Daher war es bisher nicht möglich, auch nur die Existenz der Scheibe experimentell zu bestätigen. Das gemessene Lichtspektrum der Strahlung aus dem Kern stimmte auch nicht mit den vorausberechneten Werten überein.

"Die Astronomen wurden vor allem dadurch irritiert, dass die am besten untersuchten Modelle für die Strahlung der Akkretionsscheiben nicht zu den Beobachtungen passten. Dabei fiel auf, dass die Scheiben nicht annähernd so blau waren, wie sie theoretisch hätten sein sollen", erklärt Makoto Kishimoto. Um diesen Gegensatz zu klären, hat Kishimoto zusammen mit weiteren Astronomen aus aller Welt den Anteil der Störstrahlung aus den Staubwolken unterdrückt. Sie verwendeten dafür eine besondere Eigenschaft des Lichts: die Polarisation.

Denn die Strahlung aus der Akkretionsscheibe wird in der direkten Umgebung der Scheibe gestreut und erscheint daher polarisiert, das heißt, die Lichtwellen schwingen nur in einer Ebene. Die Strahlung aus den Staubwolken weiter weg ist hingegen unpolarisiert, die Lichtwellen schwingen kreuz und quer. Mit dem Polarisationsfilter lassen sich beide Strahlungstypen voneinander trennen und die Astronomen können die wahre spektrale Verteilung der Kernquelle bestimmen.

Für diese Beobachtungen kamen Polarisationsfilter an einigen der größten Teleskope weltweit zum Einsatz - an einem der VLT-Teleskope der Europäischen Südsternwarte auf dem Paranal in Chile und am United Kingdom Infrared Telescope (UKIRT) auf dem Mauna Kea in Hawaii. Dadurch wurde es möglich, den Beitrag der heißen Staubwolken von außerhalb der Akkretionsscheibe zu unterdrücken und zu zeigen, dass die spektrale Verteilung der Strahlung aus der Akkretionsscheibe selbst tatsächlich so blau ist wie von der Theorie gefordert.

Robert Antonucci von der University of California at Santa Barbara ist ebenfalls an dem Forschungsprojekt beteiligt: "Unser Verständnis der physikalischen Prozesse in der Akkretionsscheibe ist noch sehr unvollkommen", sagt er. "Aber zumindest haben wir jetzt eine zuverlässige Idee des Gesamtbilds." Die Beobachtungsdaten weisen darauf hin, dass die gemessene Strahlung aus den äußeren Bereichen der Akkretionsscheibe stammt. Wichtige Fragen bleiben offen, etwa: Wie und wo endet das Gebiet der Akkretionsscheibe und wie wird Material dorthin nachgeliefert? "Unsere neue Methode sollte es bereits in naher Zukunft erstmals ermöglichen, darauf Antworten zu finden ", sagt Makoto Kishimoto.

Weitere Informationen erhalten Sie von:

Dr. Makoto Kishimoto
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49-228-525-186, Fax: +49-228-525-229
E-Mail: mk (at) mpifr-bonn.mpg.de
Dr. Norbert Junkes, Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49-228-525-399, Fax: +49-228-525-438
E-Mail: njunkes (at) mpifr-bonn.mpg.de

| Max-Planck Institut
Weitere Informationen:
http://www.mpg.de
http://www.mpifr-bonn.mpg.de

Weitere Berichte zu: Radioastronomie Staubwolke

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops