Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Galaxienherz durch die Staubbrille betrachtet

24.07.2008
Max-Planck-Forscher beobachten erstmals Materiescheiben in aktiven Sternsystemen

Dass sie existieren, beweist die extrem starke Strahlung, die sie aussenden. So tief ins Innere hineinschauen konnten Astronomen jedoch bisher nicht in aktive Galaxien. Denn sie verbergen sich in einem Meer aus Staubwolken. Im Inneren vermutete man Schwarze Löcher, die Gas und Sterne aus ihrer Umgebung einsaugen.

Die eingesammelte Materie kreist dann in der so genannten Akkretionsscheibe um den Kern und sendet den größten Anteil der Strahlung der Galaxie aus. Bis vor kurzem nur in der Theorie belegt, konnte eine solche Scheibe erstmals direkt beobachtet werden. Dazu hat ein internationales Team von Astronomen unter der Leitung von Makoto Kishimoto vom Bonner Max-Planck-Institut für Radioastronomie nun eine geschickte Methode gefunden. Mit einem Polarisationsfilter haben die Forscher die störende Strahlung der Staubwolken ausgeblendet und das vorausgesagte Spektrum der Akkretionsscheibe experimentell bestätigt. (Nature, 24. Juli 2008)

Will man ein Foto mit kräftigen Farben schießen oder sich beim Autofahren nicht von spiegelnden Fensterscheiben blenden lassen, greift man vielleicht zu einem Polarisationsfilter. Man setzt ihn vor das Kamera-Objektiv oder als Brille auf die Nase. Nur zur Beobachtung von aktiven Galaxien hat sie bis jetzt noch niemand eingesetzt. Genau diese Idee hatte das internationale Forscherteam um Makoto Kishimoto vom Max-Planck-Institut für Radioastronomie.

Mit diesem Trick ist es den Physikern gelungen, Quasare, die stark leuchtenden Kernbereiche von weit entfernten Galaxien, unverfälscht zu beobachten. Die massereichen Schwarzen Löcher in ihrem Zentrum strahlen mit einer Energie, die diejenige der Sonne um ein Billionenfaches übertrifft. Die mächtigen Kraftquellen werden dabei angetrieben durch interstellares Gas, das in Form sogenannter Akkretionsscheiben aus der Umgebung direkt in das Schwarze Loch eingesogen wird.
... mehr zu:
»Radioastronomie »Staubwolke

Bislang war es nicht möglich, diese Umgebung direkt zu untersuchen, denn sie befindet sich in dichten Staubwolken. Die starke Strahlung dieser Wolken verfälscht das gesuchte Spektrum der Akkretionsscheibe. Daher war es bisher nicht möglich, auch nur die Existenz der Scheibe experimentell zu bestätigen. Das gemessene Lichtspektrum der Strahlung aus dem Kern stimmte auch nicht mit den vorausberechneten Werten überein.

"Die Astronomen wurden vor allem dadurch irritiert, dass die am besten untersuchten Modelle für die Strahlung der Akkretionsscheiben nicht zu den Beobachtungen passten. Dabei fiel auf, dass die Scheiben nicht annähernd so blau waren, wie sie theoretisch hätten sein sollen", erklärt Makoto Kishimoto. Um diesen Gegensatz zu klären, hat Kishimoto zusammen mit weiteren Astronomen aus aller Welt den Anteil der Störstrahlung aus den Staubwolken unterdrückt. Sie verwendeten dafür eine besondere Eigenschaft des Lichts: die Polarisation.

Denn die Strahlung aus der Akkretionsscheibe wird in der direkten Umgebung der Scheibe gestreut und erscheint daher polarisiert, das heißt, die Lichtwellen schwingen nur in einer Ebene. Die Strahlung aus den Staubwolken weiter weg ist hingegen unpolarisiert, die Lichtwellen schwingen kreuz und quer. Mit dem Polarisationsfilter lassen sich beide Strahlungstypen voneinander trennen und die Astronomen können die wahre spektrale Verteilung der Kernquelle bestimmen.

Für diese Beobachtungen kamen Polarisationsfilter an einigen der größten Teleskope weltweit zum Einsatz - an einem der VLT-Teleskope der Europäischen Südsternwarte auf dem Paranal in Chile und am United Kingdom Infrared Telescope (UKIRT) auf dem Mauna Kea in Hawaii. Dadurch wurde es möglich, den Beitrag der heißen Staubwolken von außerhalb der Akkretionsscheibe zu unterdrücken und zu zeigen, dass die spektrale Verteilung der Strahlung aus der Akkretionsscheibe selbst tatsächlich so blau ist wie von der Theorie gefordert.

Robert Antonucci von der University of California at Santa Barbara ist ebenfalls an dem Forschungsprojekt beteiligt: "Unser Verständnis der physikalischen Prozesse in der Akkretionsscheibe ist noch sehr unvollkommen", sagt er. "Aber zumindest haben wir jetzt eine zuverlässige Idee des Gesamtbilds." Die Beobachtungsdaten weisen darauf hin, dass die gemessene Strahlung aus den äußeren Bereichen der Akkretionsscheibe stammt. Wichtige Fragen bleiben offen, etwa: Wie und wo endet das Gebiet der Akkretionsscheibe und wie wird Material dorthin nachgeliefert? "Unsere neue Methode sollte es bereits in naher Zukunft erstmals ermöglichen, darauf Antworten zu finden ", sagt Makoto Kishimoto.

Weitere Informationen erhalten Sie von:

Dr. Makoto Kishimoto
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49-228-525-186, Fax: +49-228-525-229
E-Mail: mk (at) mpifr-bonn.mpg.de
Dr. Norbert Junkes, Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49-228-525-399, Fax: +49-228-525-438
E-Mail: njunkes (at) mpifr-bonn.mpg.de

| Max-Planck Institut
Weitere Informationen:
http://www.mpg.de
http://www.mpifr-bonn.mpg.de

Weitere Berichte zu: Radioastronomie Staubwolke

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht VLT auf der Suche nach Planeten im Sternsystem Alpha Centauri
10.01.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Feinstaub weckt schlafende Viren in der Lunge

16.01.2017 | Biowissenschaften Chemie

Energieeffizienter Gebäudebetrieb: Monitoring-Plattform MONDAS identifiziert Einsparpotenzial

16.01.2017 | Messenachrichten

Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?

16.01.2017 | Biowissenschaften Chemie