Supraleitung: Symmetrie macht den Unterschied

Supraleitende Schaltkreise mit lateralen Abmessungen im Bereich von 100 nm bis einigen Mikrometern verhalten sich trotz ihrer im Vergleich zu natürlichen Atomen riesigen Abmessungen in vielerlei Hinsicht wie „künstliche Atome“. Sie besitzen eine diskrete Niveaustruktur und können im einfachsten Fall als quantenmechanische Zweiniveausysteme betrachtet werden, die man auch als „Quantenbits“ oder kurz als „Qubits“ bezeichnet.

Solche Qubits werden im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich (NIM)“ und des Sonderforschungsbereichs 631 der Deutschen Forschungsgemeinschaft intensiv untersucht. Sie bilden nicht nur die Grundbausteine für festkörperbasierte Quanteninformationssysteme, sondern ermöglichen auch Einblicke in die Quantenphysik makroskopischer Systeme.

Im Gegensatz zu natürlichen Atomen können die Eigenschaften der künstlichen Festkörperatome von außen z.B. durch elektrische oder magnetische Felder gezielt kontrolliert und über einen weiten Bereich variiert werden. Diese Steuerbarkeit wurde jetzt von Forschern in der Arbeitsgruppe von Prof. Gross (TU München) am Walther-Meißner-Institut der Bayerischen Akademie der Wissenschaften in einer Zusammenarbeit mit den NTT Basic Research Laboratories in Japan und der LMU München dazu benutzt, die Symmetrie für ein „supraleitendes Festkörperatom“ gezielt zu brechen.

In den faszinierenden Experimenten wurden künstliche supraleitende Atome untersucht, die an die quantisierten Schwingungsmoden eines Mikrowellenresonators gekoppelt sind. Solche Systeme bilden das Pendant zu den in der Quantenoptik intensiv untersuchten gekoppelten Systemen aus natürlichen Atomen und optischen Resonatoren. In Analogie zur optischen Cavity-Quantenelektrodynamik (Cavity-QED) wird deshalb dieses junge und prosperierende Forschungsgebiet als Circuit-QED bezeichnet.

Die jetzt in der Fachzeitschrift „Nature Physics“ veröffentlichten Forschungsergebnisse zeigen, dass das Verhalten des gekoppelten Systems aus supraleitendem Qubit und Mikrowellenresonator durch einen Frequenzkonversionsprozess der Mikrowellenphotonen bestimmt wird. Das Auftreten dieses Prozesses hängt von den zugrundeliegenden Symmetrieeigenschaften ab (siehe Abbildung), die durch äußere Kontrollparameter (magnetischer Fluss in unserem Fall) gezielt eingestellt werden können.

Die erzielten Ergebnisse werfen ein neues Licht auf die fundamentalen Symmetrieeigenschaften von Quantenschaltkreisen und deren inhärente nichtlineare Dynamik. Die für künstliche Quantensysteme mögliche steuerbare Symmetriebrechung kann nicht nur für das Studium grundlegender Fragestellungen zur Atom-Licht-Wechselwirkung, sondern auch für zahlreiche Anwendungen ausgenutzt werden. Zu nennen sind hierbei vor allem parametrische Frequenzkonversion, die kontrollierte Erzeugung einzelner Mikrowellenphotonen oder die Erzeugung von gequetschten von Quantenzuständen („Squeezing“).

Publikation:
Two-photon probe of the Jaynes-Cummings model and controlled symmetry breaking in circuit QED
Frank Deppe, Matteo Mariantoni, E. P. Menzel, A. Marx, S. Saito, K. Kakuyanagi, H. Tanaka, T. Meno, K. Semba, H. Takayanagi, E. Solano & R. Gross

Nature Physics, published online: 29 June 2008; | doi:10.1038/nphys1016

Ansprechpartner:
Prof. Dr. Rudolf Gross
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
und Physik-Department, Technische Universität München
Tel.: +49 (0)89 / 289 – 14201
E-Mail: Rudolf.Gross@wmi.badw.de

Media Contact

Dr. Ellen Latzin idw

Weitere Informationen:

http://www.wmi.badw-muenchen.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der Klang der idealen Beschichtung

Fraunhofer IWS transferiert mit »LAwave« lasergestützte Schallanalyse von Oberflächen in industrielle Praxis. Schallwellen können auf Oberflächen Eigenschaften verraten. Parameter wie Beschichtungsqualität oder Oberflächengüte von Bauteilen lassen sich mit Laser und…

Individuelle Silizium-Chips

… aus Sachsen zur Materialcharakterisierung für gedruckte Elektronik. Substrate für organische Feldeffekttransistoren (OFET) zur Entwicklung von High-Tech-Materialien. Wie leistungsfähig sind neue Materialien? Führt eine Änderung der Eigenschaften zu einer besseren…

Zusätzliche Belastung bei Knochenmarkkrebs

Wie sich Übergewicht und Bewegung auf die Knochengesundheit beim Multiplen Myelom auswirken. Die Deutsche Forschungsgemeinschaft (DFG) fördert ein Forschungsprojekt der Universitätsmedizin Würzburg zur Auswirkung von Fettleibigkeit und mechanischer Belastung auf…

Partner & Förderer