Mit starken Magneten Atomen und Molekülen auf der Spur

Dr. Ulrich Scheler am Herzstück des neuen NMR-Labors am IPF Dresden e. V.

Am Institut für Polymerforschung Dresden e. V. (IPF) wurde ein neues Labor für magnetische Kernresonanzspektroskopie (englisch ’nuclear magnetic resonance’) in Betrieb genommen. Seinen Standort hat das hochmoderne NMR-Labor im neu gebauten Max-Bergmann-Zentrum für Biomaterialien.
Es stehen nunmehr zwei Spektrometer mit supraleitenden Magneten mit Feldstärken von 11 und 7 Tesla zur Verfügung. Finanziert wurde die Investition im Umfang von 1 Mio EURO aus Haushaltmitteln des IPF und aus Mitteln des Bundesministerium für Bildung und Forschung.
Magnetische Kernresonanzesonanz ist heute eine in Chemie, Biologie, Pharmazie und Materialforschung weit verbreitete Methode für die Strukturaufklärung gelöster Moleküle sowie die Grundlage der in der medizinischen Diagnostik eingesetzten Magnetresonanztomographie. In der Materialforschung lassen sich mithilfe der magnetischen Kernresonanz Struktur, Ordnung und molekulare Bewegungen untersuchen. Diese mikroskopischen Eigenschaften bestimmen die Eigenschaften von Werkstoffen und Bauteilen.
In der Arbeitsgruppe von Dr. Ulrich Scheler am IPF werden NMR-Methoden entsprechend spezieller materialwissenschaftlicher Fragestellungen weiterentwickelt. Schwerpunkte sind die Strukturcharakterisierung fester Materialien sowie die Untersuchung strömender Moleküle. Weiterhin besteht die Möglichkeit, die räumliche Anordnung einzelner Atome im festen Werkstoff durch die Messung von Atomabständen zu untersuchen und somit ein detailliertes Bild des Werkstoffs zu erhalten.
Wie in der Kernspintomographie in der Medizin können Bilder auch aus dem Inneren von undurchsichtigen Materialien aufgenommen werden, und durch Aufnahme und Vergleich von Bildern zu unterschiedlichen Zeitpunkten ist es möglich, auch Bewegungen abzubilden. Das Hauptinteresse der Forscher liegt in der Abbildung von Bewegungen in strömenden Polymerschmelzen. Damit kann die Belastung von Kunststoffen während der Bearbeitung beobachtet werden. Aus den gewonnenen Erkenntnissen können dann optimale Bedingungen für die Verarbeitung von Hochleistungskunstoffen z.B. für die Fahrzeugindustrie und komplexen Systemen wie für den Einsatz in der Medizin entwickelt werden. Die einzigartigen Kontrastmöglichkeiten der NMR-Bildgebung werden auch hier eingesetzt, um komplexe Systeme zerstörungsfrei in die Einzelkomponenten zu zerlegen. Werden die Bewegungen gelöster Makromoleküle mit diesen Methoden verfolgt, lässt sich daraus deren Ausdehnung und Ladung ableiten. Das wiederum ist Grundlage für die Untersuchung von Wechselwirkungen zwischen Proteinen und Kunststoffen und damit für die Entwicklung von Materialien für den Einsatz in der Medizin.
Eine offizielle Einweihung des Labors erfolgt im Oktober mit einem zweitägigen Workshop, auf dem anerkannte Wissenschaftler aus Deutschland, Frankreich, Großbritannien, Russland und Japan Vorträge halten werden..

Die Methode der magnetische Kernresonanzspektroskopie beruht auf der Wechselwirkung der magnetischen Momente von Atomkernen mit einem starken Magnetfeld. Die Kerne drehen sich mehrere Millionen Male pro Sekunde, wobei die genaue Frequenz empfindlich auf kleinste Änderungen der Magnetfeldstärke reagiert – allein schon auf so kleine Änderungen, wie sie durch die bloße Nachbarschaft anderer Kerne hervorgerufen werden. Diese winzigen Frequenzänderungen können tatsächlich gemessen werden – mit einer Genauigkeit, als würde man die Entfernung Erde-Mond auf 100 m genau bestimmen – und beinhalten Informationen über die chemische Struktur und molekulare Ordnung.

Media Contact

Kerstin Wustrack idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer