Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit starken Magneten Atomen und Molekülen auf der Spur

19.07.2002


Dr. Ulrich Scheler am Herzstück des neuen NMR-Labors am IPF Dresden e. V.


Blick in das neue NMR-Labor am IPF Dresden e. V.


Am Institut für Polymerforschung Dresden e. V. (IPF) wurde ein neues Labor für magnetische Kernresonanzspektroskopie (englisch ’nuclear magnetic resonance’) in Betrieb genommen. Seinen Standort hat das hochmoderne NMR-Labor im neu gebauten Max-Bergmann-Zentrum für Biomaterialien.
Es stehen nunmehr zwei Spektrometer mit supraleitenden Magneten mit Feldstärken von 11 und 7 Tesla zur Verfügung. Finanziert wurde die Investition im Umfang von 1 Mio EURO aus Haushaltmitteln des IPF und aus Mitteln des Bundesministerium für Bildung und Forschung.


Magnetische Kernresonanzesonanz ist heute eine in Chemie, Biologie, Pharmazie und Materialforschung weit verbreitete Methode für die Strukturaufklärung gelöster Moleküle sowie die Grundlage der in der medizinischen Diagnostik eingesetzten Magnetresonanztomographie. In der Materialforschung lassen sich mithilfe der magnetischen Kernresonanz Struktur, Ordnung und molekulare Bewegungen untersuchen. Diese mikroskopischen Eigenschaften bestimmen die Eigenschaften von Werkstoffen und Bauteilen.
In der Arbeitsgruppe von Dr. Ulrich Scheler am IPF werden NMR-Methoden entsprechend spezieller materialwissenschaftlicher Fragestellungen weiterentwickelt. Schwerpunkte sind die Strukturcharakterisierung fester Materialien sowie die Untersuchung strömender Moleküle. Weiterhin besteht die Möglichkeit, die räumliche Anordnung einzelner Atome im festen Werkstoff durch die Messung von Atomabständen zu untersuchen und somit ein detailliertes Bild des Werkstoffs zu erhalten.
Wie in der Kernspintomographie in der Medizin können Bilder auch aus dem Inneren von undurchsichtigen Materialien aufgenommen werden, und durch Aufnahme und Vergleich von Bildern zu unterschiedlichen Zeitpunkten ist es möglich, auch Bewegungen abzubilden. Das Hauptinteresse der Forscher liegt in der Abbildung von Bewegungen in strömenden Polymerschmelzen. Damit kann die Belastung von Kunststoffen während der Bearbeitung beobachtet werden. Aus den gewonnenen Erkenntnissen können dann optimale Bedingungen für die Verarbeitung von Hochleistungskunstoffen z.B. für die Fahrzeugindustrie und komplexen Systemen wie für den Einsatz in der Medizin entwickelt werden. Die einzigartigen Kontrastmöglichkeiten der NMR-Bildgebung werden auch hier eingesetzt, um komplexe Systeme zerstörungsfrei in die Einzelkomponenten zu zerlegen. Werden die Bewegungen gelöster Makromoleküle mit diesen Methoden verfolgt, lässt sich daraus deren Ausdehnung und Ladung ableiten. Das wiederum ist Grundlage für die Untersuchung von Wechselwirkungen zwischen Proteinen und Kunststoffen und damit für die Entwicklung von Materialien für den Einsatz in der Medizin.

Eine offizielle Einweihung des Labors erfolgt im Oktober mit einem zweitägigen Workshop, auf dem anerkannte Wissenschaftler aus Deutschland, Frankreich, Großbritannien, Russland und Japan Vorträge halten werden..

Die Methode der magnetische Kernresonanzspektroskopie beruht auf der Wechselwirkung der magnetischen Momente von Atomkernen mit einem starken Magnetfeld. Die Kerne drehen sich mehrere Millionen Male pro Sekunde, wobei die genaue Frequenz empfindlich auf kleinste Änderungen der Magnetfeldstärke reagiert - allein schon auf so kleine Änderungen, wie sie durch die bloße Nachbarschaft anderer Kerne hervorgerufen werden. Diese winzigen Frequenzänderungen können tatsächlich gemessen werden - mit einer Genauigkeit, als würde man die Entfernung Erde-Mond auf 100 m genau bestimmen - und beinhalten Informationen über die chemische Struktur und molekulare Ordnung.

Kerstin Wustrack | idw
Weitere Informationen:
http://www.ipfdd.de//lectures/nmr_workshop.html

Weitere Berichte zu: Atom IPF Kernresonanzspektroskopie Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten