Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hoehenvermessung von Nano-Landschaft

08.07.2008
UNGEWÖHNLICHE GEBIRGSFORMATION AUF NANOSKALA

Bei der Herstellung dünner, organischer Schichten aus elektrisch leitendem Material können sich terrassenartige Erhebungen von wenigen Nanometern Höhe bilden. Dieses Phänomen war bisher nur von anorganischen Materialien bekannt und ist für die zukünftige Herstellung einer neuen Generation halbleitender Bauelemente auf Basis dünner organischer Schichten von entscheidender Bedeutung. Die jetzt in der ersten Juli-Ausgabe von SCIENCE veröffentlichten Daten wurden im Rahmen eines vom Wissenschaftsfonds FWF geförderten Nationalen Forschungsnetzwerks erhoben.

Anorganische Halbleiter sind einfach aufgebaut und ermöglichen leistungsstarke Computer. Organische Halbleiter hingegen sind komplex, erlauben aber die Herstellung neuartiger Elektronikschaltkreise - wie die ersten Prototypen aufrollbarer Bildschirme plastisch vor Augen führen. Doch diese Vorteile organischer Halbleiter können nur dann voll genutzt werden, wenn das Verhalten ihrer funktionell entscheidenden dünnen, organischen Molekülschicht besser verstanden wird. Genau zu diesem Verständnis trägt das Nationale Forschungsnetzwerk (NFN) "Interface controlled and functionalised organic thin films" des österreichischen Wissenschaftsfonds FWF bei.

MIKROSKOPISCHE HÖHENVERMESSUNG

... mehr zu:
»Diffusionsbarriere »Molekül

Mit einer aktuellen Publikation in SCIENCE konnte nun ein Team des NFN zeigen, dass sich organische Moleküle auf einem Trägermaterial in bisher unbekannter Form ausbreiten um dünne, elektrisch leitende Filme zu bilden. Dazu Prof. Christian Teichert vom Institut für Physik der Montanuniversität Leoben: "An den von Festkörperphysikern der TU Graz hergestellten Schichten der organischen Substanz Parahexaphenyl wurden ein durchaus überraschendes Diffusionsverhalten an Stufenkanten, welche sich beim Schichtwachstum bilden, beobachtet. Tatsächlich treffen die Moleküle hier auf eine Diffusionsbarriere, was zu einer Art Stapelung der weiteren Moleküle führt. Eine solche Diffusionsbarriere ist zwar in anorganischen, atomar aufgebauten Schichten bekannt - sie wird nach ihren Entdeckern Ehrlich-Schwoebel-Barriere genannt - für organisches Material wurde sie aber noch nie beobachtet."

Zum besseren Verständnis dieses bisher unbekannten Verhaltens der organischen Moleküle nutzte das Team in Leoben die Rasterkraftmikroskopie. Diese erlaubte die genaue Vermessung der Nano-Berge an den Stufenkanten. Die Auswertung der so gewonnenen Daten führte zu einer weiteren Überraschung. Die Form der Nano-Erhebungen erinnert stark an terrassierte Berge, wie sie aus dem Bergbau bekannt sind. Dabei fiel dem Team auf, dass die Terrassenhöhe von 2,6 nm ziemlich genau der Länge eines Moleküls von Parahexaphenyl entspricht. Die Schlussfolgerung daraus: Die Moleküle ordnen sich an der Diffusionsbarriere hochkant an.

Jedoch zeigte sich auch, dass die unteren Terrassen eine etwas geringere Höhe aufweisen als die jeweils darüber liegenden. Eine Erklärung für dieses Phänomen liefert der Projektmitarbeiter Dr. Gregor Hlawacek: "Die Daten aus der Vermessung erlaubten uns für diesen Fall die Ehrlich-Schwoebel-Barriere zu berechnen. Weiter ergab sich, dass die Moleküle der unteren Terrassen geneigt abgelagert werden. Damit verringert sich hier die Terrassenhöhe in Relation zum Neigungswinkel."

ENERGIESPARMASSNAHME AUF NANOEBENE

Mit den Messwerten wurden Computersimulationen am Lehrstuhl für Atomistic Modelling and Design of Materials durchgeführt. Diese konnten nicht nur die experimentellen Werte für die Diffusionsbarrieren bestätigen, sondern sie offenbarten, dass sich die Parahexaphenyl-Moleküle beim Diffundieren verbiegen. Das war überraschend, da das Verbiegen ein Aufweiten der Bindungen innerhalb des Moleküls erfordert, was auf Grund der dafür benötigten Energie eigentlich vermieden wird. Allerdings kann das diffundierende Molekül so besser als ein starres Molekül Bindungen zu Nachbarmolekülen aufrechterhalten, so dass das Verbiegen insgesamt der energiesparendere Mechanismus ist.

Für das Team aus Leoben und Graz sind diese Erkenntnisse äußerst spannend. Denn zur Herstellung organischer Dünnschichttransistoren sind geschlossene Schichten solcher aufrecht stehender Moleküle notwendig. Das bessere Verständnis über die grundlegenden Kräfte, die eben das bewirken, wird deren zukünftige Manipulation und somit kontrollierte Nutzung erlauben. Damit leistet dieses NFN einen unmittelbaren Beitrag zur zukünftigen Herstellung einer neuen Generation halbleitender Bauelemente.

Originalpublikation: Characterization of Step-Edge Barriers in Organic Thin-Film Growth, G. Hlawacek, P. Puschnig, A. Winkler, C. Ambrosch-Draxl & C. Teichert. Science (2008), 108-111.

Wissenschaftlicher Kontakt:
Prof. Christian Teichert
Montanuniversität Leoben
Institut für Physik
T + 43 / 3842 / 402 - 4663
E teichert@unileoben.ac.at
Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung
Campus Vienna Biocenter 2
1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at

Sonja Szeleczky | PR&D
Weitere Informationen:
http://www.fwf.ac.at

Weitere Berichte zu: Diffusionsbarriere Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017 | Biowissenschaften Chemie