Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radioaktiver Zerfall wird durch Kühlung nicht beeinflusst

03.07.2008
Vor genau zwei Jahren sorgte die Meldung für Aufsehen, dass die Halbwertszeit von Atommüll drastisch reduziert werden könnte, wenn man ihn - in Metall eingebettet - kühlt. Dafür verantwortlich sollte ein in der Fachwelt umstrittener Effekt sein, der die Reaktionsfreudigkeit des radioaktiven Atomkerns erhöht und damit den Zerfall beschleunigt.

Neue experimentelle Ergebnisse von Forschern aus Dresden und Vancouver zeigen, dass sich der radioaktive Zerfall nicht durch Kühlung beeinflussen lässt. Dies ist nachzulesen in einer kürzlich erschienenen Ausgabe des Fachjournals "Physical Review C".

Radioaktive Atomkerne sind instabil, sie zerfallen mit einer für den jeweiligen Kern bestimmten Rate. Der Gold-Atomkern mit der Massenzahl 196 beispielsweise hat eine Halbwertszeit von drei Tagen, Gold-198 eine von sechs Tagen. In dieser Zeit zerfällt jeweils die Hälfte der Atomkerne in andere, stabile Kerne, nach etwa zehn Halbwertszeiten ist die Radioaktivität auf ein Tausendstel des ursprünglichen Werts abgeklungen.

Kernphysiker des Forschungszentrums Dresden-Rossendorf (FZD) und aus dem kanadischen Vancouver untersuchten diesen Zerfallsprozess bei Raumtemperatur und bei tiefen Temperaturen an den radioaktiven Metallen Gold-196, Gold-198 und Natrium-22, lautete doch die vor zwei Jahren aufgestellte These, dass in Metall eingebettete radioaktive Kerne schneller zerfallen sollten, wenn man sie stark genug kühlt.

... mehr zu:
»Atomkern »FZD »Halbwertszeit

Für die Veränderung des radioaktiven Zerfalls bei tiefen Temperaturen sollten diesen Arbeiten zufolge die Leitungselektronen des Metalls verantwortlich sein. Jeder Atomkern hat wegen seiner positiven Ladung eine Barriere um sich herum, die positiv geladene Teilchen überwinden müssen, um in den Kern einzudringen. In der Physikerzunft anerkannt ist, dass die Elektronenwolke, die den Kern umgibt, diese Barriere leicht herabsetzt. Andere Teilchen können dann einfacher in den Atomkern gelangen. Dieser Effekt heißt Elektronen-Screening-Effekt. Er scheint zuzunehmen, wenn die Atomkerne abgekühlt werden.

Aus der Tatsache, dass dichte Elektronenwolken die Reaktionsfreudigkeit von Atomkernen erhöhen, zogen Physiker vor zwei Jahren den Schluss, dass der Effekt auch auf radioaktiven Zerfall übertragen werden könne. Erste Experimente schienen eine Veränderung der Halbwertszeit durch Kühlung zu belegen. Die umstrittene Schlussfolgerung wurde allerdings durch zwei Arbeiten, die 2007 und 2008 in Texas (USA) und Israel durchgeführt wurden, für zunächst einen Atomkern (Gold-198) widerlegt. Die neuen Experimente in Dresden und Vancouver zeigen, dass die Zerfallsrate der drei untersuchten radioaktiven Metalle bei tiefen Termperaturen ganz genau der Zerfallsrate bei Raumtemperaturen entspricht. Somit ist die vor zwei Jahren aufgestellte These haltlos.

Die umstrittene These sagte vorher, dass in Metall eingebettete radioaktive Alpha- und Beta-plus-Strahler, wenn sie stark genug gekühlt werden, schneller zerfallen sollten, wohingegen für Beta-minus-Strahler und Kerne, die durch Elektroneneinfang zerfallen, eine Verlängerung der Halbwertszeit vorhergesagt wurde. Bei den gerade veröffentlichten Experimenten wurden nun erstmals in Metall eingebettetes Natrium-22 (Beta-plus-Zerfall) und Gold-196 (Zerfall durch Elektroneneinfang) untersucht. Für das dritte untersuchte Metall, Gold-198 (Beta-minus-Zerfall), konnten die Forscher aus Dresden und Vancouver die Halbwertszeit präziser als je zuvor bestimmen, so dass der Wert in der "Table of Isotopes", quasi der Bibel der Kernphysiker, von 2,6952 auf den Wert 2,6937 Tage korrigiert werden muss.

Die Gold-Proben wurden im Forschungszentrum Dresden-Rossendorf präpariert und bei Raumtemperatur untersucht. Die Natrium-Messungen und die Experimente bei -263 °C fanden in Vancouver statt. Alle Messungen widerlegten die umstrittene These. Radioaktives Metall zerfällt bei tiefen Temperaturen genauso schnell wie bei Raumtemperatur.

"Damit ist bewiesen, dass die Halbwertszeit eine physikalische Größe ist, die mit so einfachen Mitteln wie Kühlung kaum beeinflusst werden kann. Dem Atommüll ist nur mit aufwändigeren Prozessen wie beispielsweise der Transmutation beizukommen. Dafür steht uns hier am Elektronenbeschleuniger ELBE ein eigenes Labor zur Verfügung, wo wir mit Neutronenbeschuss radioaktive Atomkerne in harmlose umwandeln wollen. An ELBE haben wir auch die Aktivierung der Gold-Proben und die Messungen bei Raumtemperatur durchgeführt.", so Dr. Daniel Bemmerer vom Institut für Strahlenphysik des FZD.

Veröffentlichung:
G. Ruprecht, C. Vockenhuber, L. Buchmann, R. Woods, C. Ruiz, S. Lapi, and D. Bemmerer: "Precise measurement of the beta decay and electron capture of Na-22, Au-198, and Au-196 in low-temperature metal hosts, and reexamination of lifetime modifications, in: Physical Review C, Vol. 77, 065502 (2008).
Weitere Informationen:
Dr. Daniel Bemmerer
Institut für Strahlenphysik
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 3581
Email: d.bemmerer@fzd.de
Information:
Das Forschungszentrum Dresden-Rossendorf (FZD) hat das Ziel, strategisch und langfristig ausgerichtete Spitzenforschung in politisch und gesellschaftlich relevanten Forschungsthemen wie Energie, Gesundheit und Schlüsseltechnologien zu leisten. Folgende Fragestellungen stehen dabei im Mittelpunkt:

- Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?

- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?

- Wie schützt man Mensch und Umwelt vor technischen Risiken?

Diese Fragestellungen werden in strategischen Kooperationen mit Forschungs- und Industriepartnern bearbeitet. Ein weiterer Schwerpunkt ist der Betrieb von sechs einmaligen Großgeräten, die auch externen Nutzern zur Verfügung stehen.

Das FZD wird von Bund und Land gefördert und beschäftigt mehr als 700 Personen. Bei der Auswahl neuer Mitarbeiter stehen Qualität und Internationalität an erster Stelle. Die Ausbildung von wissenschaftlichem und technischem Nachwuchs erfolgt auf hohem Niveau und in enger Zusammenarbeit mit den Hochschulen. Auf die Vereinbarkeit von Familie und Beruf achtet das FZD in besonderem Maße.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de

Weitere Berichte zu: Atomkern FZD Halbwertszeit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Tauchgang in einen Magneten
20.07.2017 | Paul Scherrer Institut (PSI)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikrophotonik – Optische Technologien auf dem Weg in die Hochintegration

21.07.2017 | Förderungen Preise

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie