Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radioaktiver Zerfall wird durch Kühlung nicht beeinflusst

03.07.2008
Vor genau zwei Jahren sorgte die Meldung für Aufsehen, dass die Halbwertszeit von Atommüll drastisch reduziert werden könnte, wenn man ihn - in Metall eingebettet - kühlt. Dafür verantwortlich sollte ein in der Fachwelt umstrittener Effekt sein, der die Reaktionsfreudigkeit des radioaktiven Atomkerns erhöht und damit den Zerfall beschleunigt.

Neue experimentelle Ergebnisse von Forschern aus Dresden und Vancouver zeigen, dass sich der radioaktive Zerfall nicht durch Kühlung beeinflussen lässt. Dies ist nachzulesen in einer kürzlich erschienenen Ausgabe des Fachjournals "Physical Review C".

Radioaktive Atomkerne sind instabil, sie zerfallen mit einer für den jeweiligen Kern bestimmten Rate. Der Gold-Atomkern mit der Massenzahl 196 beispielsweise hat eine Halbwertszeit von drei Tagen, Gold-198 eine von sechs Tagen. In dieser Zeit zerfällt jeweils die Hälfte der Atomkerne in andere, stabile Kerne, nach etwa zehn Halbwertszeiten ist die Radioaktivität auf ein Tausendstel des ursprünglichen Werts abgeklungen.

Kernphysiker des Forschungszentrums Dresden-Rossendorf (FZD) und aus dem kanadischen Vancouver untersuchten diesen Zerfallsprozess bei Raumtemperatur und bei tiefen Temperaturen an den radioaktiven Metallen Gold-196, Gold-198 und Natrium-22, lautete doch die vor zwei Jahren aufgestellte These, dass in Metall eingebettete radioaktive Kerne schneller zerfallen sollten, wenn man sie stark genug kühlt.

... mehr zu:
»Atomkern »FZD »Halbwertszeit

Für die Veränderung des radioaktiven Zerfalls bei tiefen Temperaturen sollten diesen Arbeiten zufolge die Leitungselektronen des Metalls verantwortlich sein. Jeder Atomkern hat wegen seiner positiven Ladung eine Barriere um sich herum, die positiv geladene Teilchen überwinden müssen, um in den Kern einzudringen. In der Physikerzunft anerkannt ist, dass die Elektronenwolke, die den Kern umgibt, diese Barriere leicht herabsetzt. Andere Teilchen können dann einfacher in den Atomkern gelangen. Dieser Effekt heißt Elektronen-Screening-Effekt. Er scheint zuzunehmen, wenn die Atomkerne abgekühlt werden.

Aus der Tatsache, dass dichte Elektronenwolken die Reaktionsfreudigkeit von Atomkernen erhöhen, zogen Physiker vor zwei Jahren den Schluss, dass der Effekt auch auf radioaktiven Zerfall übertragen werden könne. Erste Experimente schienen eine Veränderung der Halbwertszeit durch Kühlung zu belegen. Die umstrittene Schlussfolgerung wurde allerdings durch zwei Arbeiten, die 2007 und 2008 in Texas (USA) und Israel durchgeführt wurden, für zunächst einen Atomkern (Gold-198) widerlegt. Die neuen Experimente in Dresden und Vancouver zeigen, dass die Zerfallsrate der drei untersuchten radioaktiven Metalle bei tiefen Termperaturen ganz genau der Zerfallsrate bei Raumtemperaturen entspricht. Somit ist die vor zwei Jahren aufgestellte These haltlos.

Die umstrittene These sagte vorher, dass in Metall eingebettete radioaktive Alpha- und Beta-plus-Strahler, wenn sie stark genug gekühlt werden, schneller zerfallen sollten, wohingegen für Beta-minus-Strahler und Kerne, die durch Elektroneneinfang zerfallen, eine Verlängerung der Halbwertszeit vorhergesagt wurde. Bei den gerade veröffentlichten Experimenten wurden nun erstmals in Metall eingebettetes Natrium-22 (Beta-plus-Zerfall) und Gold-196 (Zerfall durch Elektroneneinfang) untersucht. Für das dritte untersuchte Metall, Gold-198 (Beta-minus-Zerfall), konnten die Forscher aus Dresden und Vancouver die Halbwertszeit präziser als je zuvor bestimmen, so dass der Wert in der "Table of Isotopes", quasi der Bibel der Kernphysiker, von 2,6952 auf den Wert 2,6937 Tage korrigiert werden muss.

Die Gold-Proben wurden im Forschungszentrum Dresden-Rossendorf präpariert und bei Raumtemperatur untersucht. Die Natrium-Messungen und die Experimente bei -263 °C fanden in Vancouver statt. Alle Messungen widerlegten die umstrittene These. Radioaktives Metall zerfällt bei tiefen Temperaturen genauso schnell wie bei Raumtemperatur.

"Damit ist bewiesen, dass die Halbwertszeit eine physikalische Größe ist, die mit so einfachen Mitteln wie Kühlung kaum beeinflusst werden kann. Dem Atommüll ist nur mit aufwändigeren Prozessen wie beispielsweise der Transmutation beizukommen. Dafür steht uns hier am Elektronenbeschleuniger ELBE ein eigenes Labor zur Verfügung, wo wir mit Neutronenbeschuss radioaktive Atomkerne in harmlose umwandeln wollen. An ELBE haben wir auch die Aktivierung der Gold-Proben und die Messungen bei Raumtemperatur durchgeführt.", so Dr. Daniel Bemmerer vom Institut für Strahlenphysik des FZD.

Veröffentlichung:
G. Ruprecht, C. Vockenhuber, L. Buchmann, R. Woods, C. Ruiz, S. Lapi, and D. Bemmerer: "Precise measurement of the beta decay and electron capture of Na-22, Au-198, and Au-196 in low-temperature metal hosts, and reexamination of lifetime modifications, in: Physical Review C, Vol. 77, 065502 (2008).
Weitere Informationen:
Dr. Daniel Bemmerer
Institut für Strahlenphysik
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 3581
Email: d.bemmerer@fzd.de
Information:
Das Forschungszentrum Dresden-Rossendorf (FZD) hat das Ziel, strategisch und langfristig ausgerichtete Spitzenforschung in politisch und gesellschaftlich relevanten Forschungsthemen wie Energie, Gesundheit und Schlüsseltechnologien zu leisten. Folgende Fragestellungen stehen dabei im Mittelpunkt:

- Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?

- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?

- Wie schützt man Mensch und Umwelt vor technischen Risiken?

Diese Fragestellungen werden in strategischen Kooperationen mit Forschungs- und Industriepartnern bearbeitet. Ein weiterer Schwerpunkt ist der Betrieb von sechs einmaligen Großgeräten, die auch externen Nutzern zur Verfügung stehen.

Das FZD wird von Bund und Land gefördert und beschäftigt mehr als 700 Personen. Bei der Auswahl neuer Mitarbeiter stehen Qualität und Internationalität an erster Stelle. Die Ausbildung von wissenschaftlichem und technischem Nachwuchs erfolgt auf hohem Niveau und in enger Zusammenarbeit mit den Hochschulen. Auf die Vereinbarkeit von Familie und Beruf achtet das FZD in besonderem Maße.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de

Weitere Berichte zu: Atomkern FZD Halbwertszeit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Durchbruch mit einer Kette aus Goldatomen
17.02.2017 | Universität Konstanz

nachricht Zukunftsmusik: Neues Funktionsprinzip zur Erzeugung der „Dritten Harmonischen“
17.02.2017 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie