Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Transparentes Universum

27.06.2008
Das MAGIC-Teleskop spürt weit entferntes Gammalicht auf, das eigentlich gar nicht bei uns ankommen dürfte

Mit dem MAGIC-Teleskop auf der Kanareninsel La Palma haben Max-Planck-Physiker Gammastrahlen gemessen, die ihre Quelle vor fünf Milliarden Jahren verlassen haben. Das Licht stammt aus der Umgebung des schwarzen Lochs im Zentrum der Galaxie 3C279 und ist doppelt so lange unterwegs wie alle bisher beobachteten Gammasignale. Diese Entdeckung verändert unser Verständnis des Universums: Es ist für Gammastrahlen transparenter als gedacht. (Science, 27. Juni 2008)


Von MAGIC aufgezeichnete Himmelskarte der Region um die Galaxie 3C279 im Licht der hochenergetischen Gammastrahlung. Bild: MAGIC-Kollaboration


Kurz nach Sonnenuntergang wird das MAGIC-Teleskop auf seine Messungen in der Nacht vorbereitet. Mit einem Spiegeldurchmesser von 17 Metern ist es das weltweite größte seiner Art. Auf 2200 Metern über dem Meeresspiegel stören keine Wolken mehr die Messungen. Bild: R. Wagner, Max-Planck-Institut für Physik

Das schwarze Loch in der Galaxie 3C279 ist etwa eine Milliarde Sonnenmassen schwer und legt immer weiter zu. Dieser sogenannte aktive galaktische Kern schluckt alles, was ihm zu nahe kommt - Gas und Sterne aus seiner Umgebung - und lässt die Materie in einer Scheibe um sich rotieren. In diesem kosmischen Strudel stoßen die Teilchen miteinander zusammen und setzen Energie frei: Die Scheibe strahlt im gesamten Energiespektrum, von Radiowellen über optisches Licht bis zu den energiereichen Gammaquanten. Fast alle ausgesandte Strahlung durchläuft das Universum weitgehend ungestört. Nur das Gammalicht ist da eine Ausnahme: Es reagiert mit der Hintergrundstrahlung, die das Universum durchzieht und wird auf diese Weise ausgedünnt.

Nun ist 3C279 fünf Milliarden Lichtjahre von uns entfernt, was nahezu dem halben Radius des Alls entspricht. "Bis vor kurzem hat man gedacht, dass Gammastrahlen von so weit weg gar nicht auf der Erde ankommen dürften", sagt Robert Wagner vom Max-Planck-Institut für Physik. "Neueste Messungen haben bereits angedeutet, dass das All transparenter ist als vermutet. Wir haben aber nun herausgefunden, dass es noch durchlässiger ist." Denn die Forscher des Münchner Max-Planck-Instituts für Physik haben Licht des weit entfernten Objekts 3C279 aufgespürt.

... mehr zu:
»Gammastrahl

Als Detektor diente das weltweit größte Gammastrahlen-Teleskop MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) auf der Insel La Palma vor der afrikanischen Küste. Die Entdeckung der MAGIC-Kollaboration stellt die gängigen Theorien über das intergalaktische Hintergrundlicht in Frage: Das Universum ist für Gammalicht durchlässiger als erwartet. Entgegen gängiger Vermutungen enthält der Kosmos offenbar nur das geschätzte Minimum an Licht - nämlich jenes aller Galaxien und Sterne - und keine weiteren Ingredienzen. Und diese Hintergrundstrahlung haben Teleskope im optischen und infraroten Bereich bereits gemessen.

Das Hintergrundlicht ist von großem Interesse für die Forscher: Da es alles jemals ausgestrahlte Licht des Universums enthält, kündet es von den Strukturen im frühen Universum. Auf ihrem Weg durch das All sammeln die Gammastrahlen Informationen über die Regionen, die es passiert. "Mit den Messungen von MAGIC können wir das Hintergrundlicht von damals modellieren und so etwas über die Geschichte des Alls lernen", sagt Wagner.

Es steckt aber noch mehr in der Beobachtung von Gammastrahlung. Das hochenergetische Licht wird von den gewaltigsten und exotischsten Quellen im Weltall erzeugt: von Supernovae, aktiven galaktischen Kernen oder den kurzlebigen Gammablitzen. Diese Strahlung erlaubt es den Wissenschaftlern, solche extremen physikalischen Phänomene näher zu erforschen - die weit mehr Energie freisetzen, als sich auf der Erde erzeugen lässt. Da Gammastrahlen nicht geladen sind, werden sie auch nicht von Magnetfeldern abgelenkt und weisen direkt auf ihren Ursprung. Damit verfügen die Astronomen über ein Fenster, durch das sie ferne Objekte direkt beobachten können.

Das MAGIC-Teleskop ist Teil des Roque de los Muchachos Observatoriums auf der Kanareninsel La Palma. MAGIC-I wurde in den Jahren 2002 bis 2004 installiert und wird heute von einer internationalen Forschergruppe betrieben, in der das Max-Planck-Institut für Physik in München eine federführende Rolle einnimmt. Am Projekt sind zurzeit etwa 150 Wissenschaftler aus Italien, Spanien, der Schweiz, Finnland, Bulgarien, Kroatien, Armenien, Polen und den USA beteiligt. In Deutschland arbeiten neben den Forschern des Max-Planck-Instituts auch Teams der Universität Würzburg, der Humboldt-Universität zu Berlin, der Universität Dortmund sowie des Deutschen Elektronen-Synchrotrons (DESY) mit. Ein zweites, gleichartiges Teleskop (MAGIC-II) ist im Bau und wird im September 2008 eingeweiht.

Originalveröffentlichung:

J. Albert et al.
Very high energy gamma rays from a distant Quasar: How transparent is the Universe? Science, 27. Juni 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Gammastrahl

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau