Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der winzigste Fußball der Welt

26.06.2008
Innsbrucker Ionenphysiker sind C60 auf der Spur
Mit Fünf- und Sechsecken als Seitenflächen sehen sie aus wie ein Fußball.
Allerdings ist ihr Durchmesser dreihundert Millionen Mal kleiner:
Fußballmoleküle. Innsbrucker Ionenphysiker erforschen die aus 60 Kohlenstoffatomen (C60) bestehenden Moleküle seit über 15 Jahren. Derzeit ist ein Team um Univ.-Prof. Dr. Paul Scheier der Frage auf der Spur, welche Rolle C60 bei der Bildung komplexer Biomoleküle - damit den Bausteinen des Lebens - bereits im Weltall gespielt haben könnte.

„Neben Diamant und Grafit sind Fußballmoleküle wie C60 die dritte bisher bekannte Form von Kohlenstoff. Da das extrem stabile C60 auch im Weltraum nachgewiesen wurde, versucht die internationale Forschung die Rolle der Fußballmoleküle im größten Match überhaupt, nämlich jenem der Entstehung des Lebens, zu klären. Astrophysiker und Astrobiologen vermuten, dass in interstellaren Wolken komplexe Biomoleküle auf kohlenstoffhältigen Staub- und Eispartikeln aus einfachen Molekülen wie Wasser, Ammoniak und Kohlendioxid durch die Wechselwirkung mit langsamen Elektronen entstehen,“ erklärt Scheier. Diese Vorgänge, die bei der Bildung und Zerstörung komplexer Biomoleküle im Weltraum ablaufen dürften, werden in Innsbruck simuliert sowie Schritt für Schritt untersucht.

C60 dient bei diesen Versuchen als Modelloberfläche, um zu untersuchen, ob und wie langsame Elektronen auf kohlenstoffhältigen Staubkörnern im interstellaren Raum Auslöser chemischer Molekülsynthesen auf dem Weg zu den Bausteinen des Lebens gewesen sein könnten. Dazu werden die winzigsten Fußbälle der Welt in einer Spezialkammer in Mikro-Tröpfchen aus superkaltem Helium eingelagert. In diesem Laborexperiment ersetzt das dotierte Heliumtröpfchen die Staubteilchen. Bei 0,37 Grad Kelvin – dies ist nahe dem absoluten Nullpunkt – werden die Heliumtröpfchen und das eingelagerte C60 mit langsamen Elektronen beschossen.

... mehr zu:
»Biomolekül »Molekül

Im Weltall werden die kohlenstoffhältigen Staubpartikel mit hochenergetischem Licht bestrahlt, welches nach Absorption im Staubteilchen freie, langsame Elektronen erzeugt. Das C60 liefert im Laborexperiment die langsamen Elektronen, ohne selbst die weiteren biochemischen Prozesse zu beeinflussen. „Langsame Elektronen sind in der Lage gezielt Bindungen in komplexen Molekülen sehr selektiv zu brechen, was vor Kurzem in Innsbruck entdeckt worden ist. Diese einzigartige Eigenschaft langsamer Elektronen ist vermutlich die treibende Kraft bei der Synthese von Biomolekülen in interstellaren Wolken. Die Produkte dieser Wechselwirkungen können wir anschließend nach ihrer Masse analysieren und mit hoher Empfindlichkeit nachweisen“, betont der Wissenschaftler.

Das Innsbrucker Team will durch diese Experimente weitere Beiträge dazu liefern, wie elementare Prozesse bei der Entstehung des Lebens abgelaufen sind. Diese Forschungen sind aber nicht nur mit dieser Frage verknüpft. Die Arbeiten des Teams ermöglichen auch Rückschlüsse darauf, wie Strahlenschäden entstehen, also darauf was passiert, wenn ionisierende Strahlung (Radioaktivität oder

Röntgenstrahlung) auf Biomoleküle - wie z. B. Proteine und die DNS einwirken.

C60 wurde 1985 von Harold Kroto, Richard Smalley und Robert Curl entdeckt.
Diese Wissenschaftler wurden dafür 1996 mit dem Nobelpreis für Chemie ausgezeichnet. Am Bereich Ionenphysik des Institutes für Ionen- und Angewandte Physik der Leopold-Franzens-Universität Innsbruck konnten bereits kurz nach der Entdeckung des „prominenten“ Moleküls erste Untersuchungen mit C60-Material durchgeführt werden, da der Erfinder der Massenproduktion von C60, Prof. Wolfgang Krätschmer aus Heidelberg dem Institut eine erste Probe zur Verfügung gestellt hatte.
Bei der Erforschung von Fußballmolekülen sorgte das Innsbrucker Team unter Leitung des damaligen Institutsvorstandes, Univ.-Prof.DDr.hc.mult Tilmann Märk bisher unter anderem für internationales Aufsehen, als es als global erstes Team zusammen mit Prof. Olof Echt von der University of New Hampshire und Prof. Chava Lifschitz von der Hebrew University of Jerusalem 2001 die genaue Bindungsenergie von C60 klären konnte. C60 hat eine große Bindungsenergie von zehn Elektronenvolt (eV). Ganz im Gegensatz zu seinem großen „Bruder“, dem Fußball, hält das Fußballmolekül extrem hohe Energiedosen aus, z. B. Temperaturen von über tausend Grad Celsius. Und:

Erst bei einem Aufprall mit einer Geschwindigkeit von 30.000 Stundenkilometern löst sich seine Struktur auf.

Kontakt:
Univ.-Prof. Dr. Paul Scheier
Institut für Ionenphysik und Angewandte Physik
Technikerstrasse 25, A-6020 Innsbruck
Telefon: +43(0)512/507 6243
Mail: Paul.Scheier@uibk.ac.at
Mag. Gabriele Rampl
Public Relations Bereich Ionenphysik
Kurzgasse 3, A-1060 Wien
Telefon: +43(0)650/2763351
Mail: office@scinews.at

Gabriele Rampl | Bereich Ionenphysik
Weitere Informationen:
http://www.scinews.at
http://www.uibk.ac.at/ionen-angewandte-physik

Weitere Berichte zu: Biomolekül Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE