Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Farbig schimmernde ferroelektrische Domänen

25.06.2008
Ferromagnetische Materialien wie Eisen kennt jeder, ferroelektrische Materialien dagegen sind nur Spezialisten vertraut. Die Besonderheit: diese Materialien besitzen dauerhafte elektrische Felder und haben deshalb für die Speichertechnologie und die Piezoelektronik enorm große Bedeutung.

Die Rolle von Nord- und Südpol bei einem Magneten nehmen hier positive und negative elektrische Ladungen ein, die sich in winzigkleinen Bezirken, den Domänen, organisieren. Dresdner Forscher erzeugten mit Hilfe des Freie-Elektronen-Lasers am Rossendorfer Beschleuniger ELBE einmalige Bilder von ferroelektrischen Domänen. Die Ergebnisse wurden jetzt in der Fachzeitschrift "Physical Review Letters" veröffentlicht.

Die Forschergruppe um Prof. Lukas M. Eng von der Technischen Universität Dresden interessiert sich für das Verhalten von elektrischen Dipolen in ferroelektrischen und ähnlichen Materialien. Ferroelektrika sind spezielle Kristalle wie etwa Bariumtitanat, in denen die Atome auf besondere Art und Weise angeordnet sind. Die positiv geladenen Titan-Ionen verschieben sich im Kristallgitter relativ zu den anderen Atomen, so dass es zu einer Polarisation und damit zu einem dauerhaften elektrischen Feld kommt. Das Material hat folglich einen elektrischen Dipol, der sich durch das Anlegen eines äußeren Feldes (z.B. durch eine elektrische oder mechanische Spannung) gezielt umpolen lässt. Diese und verwandte Materialeigenschaften finden heute vielseitige Anwendungen, z. B in der Sensorik (piezoelektrische Technologie, Infrarotsensorik), werden aber auch beim "Ferroelectric Random Access Memory" (FRAM oder FeRAM) genutzt, einem nichtflüchtigen elektronischen Speichertyp der Zukunft.

Analog zum Ferromagnetismus richten sich die elektrischen Dipole parallel zueinander in kleinsten Bezirken, den Domänen, aus. Beim untersuchten Kristall ist eine Domäne nur rund ein bis zehn Mikrometer groß (ein hunderstel bis ein tausendstel Millimeter). Um die elektrischen Ladungen in den Domänen für technologische Anwendungen gezielt manipulieren zu können, müssen diese zunächst einmal sichtbar gemacht werden. Die Dresdner Wissenschaftler setzen dafür auf eine neue Variante der Mikroskopie, die so genannte optische Nahfeld-Mikroskopie. Hier wird nicht das Objekt als Ganzes abgebildet, sondern es werden nacheinander winzige Ausschnitte betrachtet und diese danach mit Hilfe eines Computers zu einem Gesamtbild zusammengesetzt. Das erreicht man, indem man einen Objektausschnitt durch eine sehr kleine Öffnung mit einem feinen Lichtstrahl aus einer sehr kurzen Entfernung beleuchtet. Trifft man dabei die richtige Wellenlänge des Lichts, so schimmern die unterschiedlichen Domänen - für das menschliche Auge unsichtbar - in leicht unterschiedlichen Farben.

... mehr zu:
»Laser »Wellenlänge

Im Experiment wird ein unsichtbarer Laserstrahl auf eine ultrascharfe Nadel - die Spitze eines Rasterkraftmikroskops - gelenkt, und diese wiederum rastert den Kristall Punkt für Punkt ab. Die Spitze, an der das Licht gestreut wird, übernimmt hier die Rolle eines Lichtkonzentrators. Damit ist die optische Auflösung alleine durch die Spitze beschränkt und erreicht ca. 100 Nanometer. Die Infrarotnahfeld-Mikroskopie erreicht so eine sagenhafte Auflösung, die um den Faktor 100 besser ist als die Wellenlänge des eingesetzten Laserlichts, womit eine physikalische Grenze von normalen optischen Mikroskopen durchbrochen wird.

Als Lichtquelle kam der Freie-Elektronen-Laser im Forschungszentrum Dresden-Rossendorf zum Einsatz. Dieser Laser erzeugt brillantes Licht in einem weiten Spektrum vom infraroten bis in den fernen infraroten Bereich, der auch Terahertz-Strahlung genannt wird. In diesem Bereich existieren weltweit nur wenige Laserquellen. Das Besondere an diesem Laser ist dessen Durchstimmbarkeit, d.h. die Wellenlänge - und damit die Farbe des Lichts - ist frei einstellbar. Die Forscher wählten eine Wellenlänge, deren dazugehörige Frequenz mit der Bewegung der Atome im Bariumtitanat-Kristall gut übereinstimmt (deren Eigenfrequenz entspricht einer Wellenlänge von ungefähr 17 Mikrometer). Folglich kommt es zur Resonanz, einer physikalischen Erscheinung, die man auch im täglichen Leben beobachten kann, z. B. wenn im fahrenden Auto ein drehzahlabhängiges Geräusch auftritt.

Die ferroelektrischen Domänen unterscheiden sich zueinander lediglich in der Ausrichtung der elektrischen Felder innerhalb der Domänen. Die Gruppe von Prof. Lukas Eng fand heraus, dass sich die Wechselwirkung von infrarotem Licht mit dem Kristall abhängig von den Domänen ändert. Die Domänen zeigen also im Infrarotlicht jeweils spezifische Resonanzfrequenzen. Die Resonanzfrequenz von Bariumtitanat liegt, abhängig von der elektrischen Polarisation, entweder bei einer Wellenlänge von 16,7 (senkrecht zur Oberfläche orientiert) oder von 17,2 Mikrometer (in der Ebene orientiert). Die Nahfeld-Mikroskopie macht diese Unterschiede sichtbar und erzeugt so kontrastreiche Aufnahmen der elektrischen Dipolverteilung in einem Kristall, die weltweit bisher einmalig sind.

Die Ergebnisse unterstreichen das große Potential von Freie-Elektronen-Lasern auf dem Gebiet der Nahfeld-Mikroskopie. Dabei profitiert die Festkörperforschung besonders von der Intensität dieser Laser in Kombination mit ihrer Durchstimmbarkeit. Die Dresdner Forscher wollen nun dank der Förderung durch die Deutsche Forschungsgemeinschaft (DFG) ihre Untersuchungen ausdehnen auf neue Materialklassen wie etwa die so genannten Multi-Ferroika, aber auch auf Biomoleküle und Halbleiter-Nanostrukturen. Gerade für letztere erwarten sie weitere spektakuläre Ergebnisse, beispielsweise über vergrabene Dotierprofile in Halbleiter-Wafern.

Veröffentlichung:
S.C. Kehr, M. Cebula, O. Mieth, T. Härtling, J Seidel, S. Grafström, L.M. Eng, S. Winnerl, D. Stehr, M. Helm: "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser", in Physical Review Letters, 100, 256403 (2008).
Weitere Informationen:
Prof. Lukas Eng
Technische Universität Dresden, Institut für Angewandte Physik
Tel.: 0351 463 - 34389
Email: eng@iapp.de
Prof. Manfred Helm
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 2260
Email: m.helm@fzd.de
Informationen für Journalisten: FZD: Dr. Christine Bohnet, Tel. 0351 260 - 2450 / 0160 96928856

E-Mail: c.bohnet@fzd.de

TUD: Kim-Astrid Magister, Tel. 0351 463-32398
E-Mail: pressestelle@tu-dresden.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de
http://www.iapp.de

Weitere Berichte zu: Laser Wellenlänge

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden
19.10.2017 | Forschungsverbund Berlin e.V.

nachricht Gravitationswellen: Sternenglanz für Jenaer Forscher
19.10.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie