Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schmelzen im Nanometer-Bereich

23.06.2008
Forscher aus Wien und Dresden erzeugten Schmelzpunkte in der Oberfläche eines Kristalls, die nur wenige Nanometer groß waren (ein Nanometer entspricht dem millionsten Teil eines Millimeters).

Hierzu setzten sie hochgeladene Ionen ein, also Atome, denen ein Großteil ihrer Elektronen entzogen wurde. Diese Ionen besitzen eine hohe interne Energie, die sie beim Auftreffen auf den Kristall in sehr kurzer Zeit abgeben und damit ein lokales Schmelzen der Oberfläche hervorrufen. Die Schmelze erstarrt und es entstehen hügelartige Erhebungen im Nanometer-Bereich. Die Ergebnisse wurden vor kurzem in der Fachzeitschrift "Physical Review Letters" veröffentlicht.

Das Xenon-Atom besitzt 54 Elektronen. Gelingt es, einen Großteil der Elektronen zu entfernen, so ist das zurückbleibende Rumpf-Atom sehr stark ionisiert. Bei dem Ionisationsprozess wird dem Ion jedoch Energie zugeführt. Diese interne Energie, so konnten Physiker der TU Wien und des Forschungszentrums Dresden-Rossendorf (FZD) nun zweifelsfrei in gemeinsamen Experimenten belegen, ist für das neuartige Zerstörungsmuster auf der Oberfläche des behandelten Kristalls verantwortlich.

Das Besondere an der Rossendorfer Anlage zur Erzeugung hochgeladener Ionen ist, dass diese vor der Materialprobe gezielt abgebremst werden können. Die Xenon-Ionen treffen mit einer Energie von nur 150 Elektronenvolt auf die Materialoberfläche (ein Elektronenvolt entspricht der Energie, die ein Elektron erhält, wenn es durch eine Spannung von einem Volt beschleunigt wird). Im Vergleich zu den 150 Elektronenvolt besitzt jedes einzelne hochgeladene Ion aber eine interne (potentielle) Energie von bis zu 38.000 Elektronenvolt. Wenn solch ein langsames Ionen-Projektil auf eine Materialoberfläche trifft, wird die hohe interne Energie in Sekundenbruchteilen auf einer sehr kleinen Fläche abgegeben. Viel Energie in sehr kurzer Zeit (einige 10 Femto-Sekunden) auf sehr kleinem Raum (wenige Nanometer) bedeutet eine hohe Leistungsdichte - nur so ist Nano-Schmelzen überhaupt möglich. Man kann dies ansonsten nur mit gepulsten Hochleistungs-Lasern oder mit sehr schnell beschleunigten Ionen mit Energien von einigen Megaelektronenvolt erreichen, was jeweils sehr aufwendige Anlagen und Experimente verlangt.

Das Verfahren, mit einzelnen hochgeladenen Ionen Nano-Schmelzpunkte auf einer Materialoberfläche zu erzeugen, kam bisher nur in Heidelberg und in Dresden zum Einsatz. Wichtig ist hierfür die Wahl des richtigen Materials. Die Physiker aus Wien wählten für die Dresdner Experimente einen nicht-leitfähigen Kristall. Dieser Isolator ist besonders gut in der Lage, die interne Energie der Ionen in Wärme umzuwandeln. Beim Auftreffen des Ions auf die Kristalloberfläche wird das Kristallgitter in unmittelbarer Umgebung sehr heiß und schmilzt. Da es sich jeweils nur um einen Bereich von wenigen Nanometern handelt, erstarrt die Schmelze schnell und an der Oberfläche stülpen sich kleine Nano-Hügel heraus. Die Physiker entdeckten zudem einen neuen Grenzwert bei niedrigen Projektilgeschwindigkeiten: jedes Xenon-Ion muss mindestens 27-fach geladen sein, um zu einem Schmelz-Projektil zu werden. Je höher der Ladungszustand eines Ions ist, desto größer ist der freiwerdende Energiebetrag an der Kristalloberfläche, der zum lokalen Schmelzen führt. Die Größe der Schmelzpunkte, und damit auch die Größe der entstehenden Nano-Hügel (zwei bis sechs Nanometer), lässt sich direkt über den Ladungszustand der Projektil-Ionen kontrollieren.

Bei den in Dresden-Rossendorf durchgeführten Experimenten, die der Wechselwirkung von langsamen hochgeladenen Ionen mit Festkörperoberflächen galten, konnten neue interessante Effekte und Nano-Strukturen studiert werden. Die kreierten Nano-Hügel ragen ca. einen Nanometer aus der Kristalloberfläche heraus und messen zwischen 20 und 50 Nanometer im Durchmesser. Derzeit werden weitere Experimente mit einem anderen Festkörper durchgeführt, in denen die hochgeladenen Ionen permanente Löcher auf der Kristalloberfläche erzeugen sollen.

Veröffentlichung:
A.S. El-Said, R. Heller, W. Meissl, R. Ritter, S. Facsko, C. Lemell, B. Solleder, I.C. Gebeshuber, G. Betz, M. Toulemonde, W. Möller, J. Burgdörfer, F. Aumayr, "Creation of Nanohillocks on CaF2 Surfaces by Single Slow Highly Charged Ions, in: Physical Review Letters 100, 237601 (2008).
Weitere Informationen:
Dr. Stefan Facsko / René Heller
Institut für Ionenstrahlphysik und Materialforschung
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 2987 / - 3577
Email: s.facsko@fzd.de / r.heller@fzd.de
Prof. Dr. F. Aumayr
Institut für Allgemeine Physik
Technische Universität Wien
Wiedner Hauptstr. 8-10
A-1040 Wien
Tel.: (+43-1) 58801-13430
Email: aumayr@iap.tuwien.ac.at
Pressekontakt:
Dr. Christine Bohnet
Presse- und Öffentlichkeitsarbeit
Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Email : c.bohnet@fzd.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de/

Weitere Berichte zu: Kristalloberfläche Nanometer

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen