Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schmelzen im Nanometer-Bereich

23.06.2008
Forscher aus Wien und Dresden erzeugten Schmelzpunkte in der Oberfläche eines Kristalls, die nur wenige Nanometer groß waren (ein Nanometer entspricht dem millionsten Teil eines Millimeters).

Hierzu setzten sie hochgeladene Ionen ein, also Atome, denen ein Großteil ihrer Elektronen entzogen wurde. Diese Ionen besitzen eine hohe interne Energie, die sie beim Auftreffen auf den Kristall in sehr kurzer Zeit abgeben und damit ein lokales Schmelzen der Oberfläche hervorrufen. Die Schmelze erstarrt und es entstehen hügelartige Erhebungen im Nanometer-Bereich. Die Ergebnisse wurden vor kurzem in der Fachzeitschrift "Physical Review Letters" veröffentlicht.

Das Xenon-Atom besitzt 54 Elektronen. Gelingt es, einen Großteil der Elektronen zu entfernen, so ist das zurückbleibende Rumpf-Atom sehr stark ionisiert. Bei dem Ionisationsprozess wird dem Ion jedoch Energie zugeführt. Diese interne Energie, so konnten Physiker der TU Wien und des Forschungszentrums Dresden-Rossendorf (FZD) nun zweifelsfrei in gemeinsamen Experimenten belegen, ist für das neuartige Zerstörungsmuster auf der Oberfläche des behandelten Kristalls verantwortlich.

Das Besondere an der Rossendorfer Anlage zur Erzeugung hochgeladener Ionen ist, dass diese vor der Materialprobe gezielt abgebremst werden können. Die Xenon-Ionen treffen mit einer Energie von nur 150 Elektronenvolt auf die Materialoberfläche (ein Elektronenvolt entspricht der Energie, die ein Elektron erhält, wenn es durch eine Spannung von einem Volt beschleunigt wird). Im Vergleich zu den 150 Elektronenvolt besitzt jedes einzelne hochgeladene Ion aber eine interne (potentielle) Energie von bis zu 38.000 Elektronenvolt. Wenn solch ein langsames Ionen-Projektil auf eine Materialoberfläche trifft, wird die hohe interne Energie in Sekundenbruchteilen auf einer sehr kleinen Fläche abgegeben. Viel Energie in sehr kurzer Zeit (einige 10 Femto-Sekunden) auf sehr kleinem Raum (wenige Nanometer) bedeutet eine hohe Leistungsdichte - nur so ist Nano-Schmelzen überhaupt möglich. Man kann dies ansonsten nur mit gepulsten Hochleistungs-Lasern oder mit sehr schnell beschleunigten Ionen mit Energien von einigen Megaelektronenvolt erreichen, was jeweils sehr aufwendige Anlagen und Experimente verlangt.

Das Verfahren, mit einzelnen hochgeladenen Ionen Nano-Schmelzpunkte auf einer Materialoberfläche zu erzeugen, kam bisher nur in Heidelberg und in Dresden zum Einsatz. Wichtig ist hierfür die Wahl des richtigen Materials. Die Physiker aus Wien wählten für die Dresdner Experimente einen nicht-leitfähigen Kristall. Dieser Isolator ist besonders gut in der Lage, die interne Energie der Ionen in Wärme umzuwandeln. Beim Auftreffen des Ions auf die Kristalloberfläche wird das Kristallgitter in unmittelbarer Umgebung sehr heiß und schmilzt. Da es sich jeweils nur um einen Bereich von wenigen Nanometern handelt, erstarrt die Schmelze schnell und an der Oberfläche stülpen sich kleine Nano-Hügel heraus. Die Physiker entdeckten zudem einen neuen Grenzwert bei niedrigen Projektilgeschwindigkeiten: jedes Xenon-Ion muss mindestens 27-fach geladen sein, um zu einem Schmelz-Projektil zu werden. Je höher der Ladungszustand eines Ions ist, desto größer ist der freiwerdende Energiebetrag an der Kristalloberfläche, der zum lokalen Schmelzen führt. Die Größe der Schmelzpunkte, und damit auch die Größe der entstehenden Nano-Hügel (zwei bis sechs Nanometer), lässt sich direkt über den Ladungszustand der Projektil-Ionen kontrollieren.

Bei den in Dresden-Rossendorf durchgeführten Experimenten, die der Wechselwirkung von langsamen hochgeladenen Ionen mit Festkörperoberflächen galten, konnten neue interessante Effekte und Nano-Strukturen studiert werden. Die kreierten Nano-Hügel ragen ca. einen Nanometer aus der Kristalloberfläche heraus und messen zwischen 20 und 50 Nanometer im Durchmesser. Derzeit werden weitere Experimente mit einem anderen Festkörper durchgeführt, in denen die hochgeladenen Ionen permanente Löcher auf der Kristalloberfläche erzeugen sollen.

Veröffentlichung:
A.S. El-Said, R. Heller, W. Meissl, R. Ritter, S. Facsko, C. Lemell, B. Solleder, I.C. Gebeshuber, G. Betz, M. Toulemonde, W. Möller, J. Burgdörfer, F. Aumayr, "Creation of Nanohillocks on CaF2 Surfaces by Single Slow Highly Charged Ions, in: Physical Review Letters 100, 237601 (2008).
Weitere Informationen:
Dr. Stefan Facsko / René Heller
Institut für Ionenstrahlphysik und Materialforschung
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 2987 / - 3577
Email: s.facsko@fzd.de / r.heller@fzd.de
Prof. Dr. F. Aumayr
Institut für Allgemeine Physik
Technische Universität Wien
Wiedner Hauptstr. 8-10
A-1040 Wien
Tel.: (+43-1) 58801-13430
Email: aumayr@iap.tuwien.ac.at
Pressekontakt:
Dr. Christine Bohnet
Presse- und Öffentlichkeitsarbeit
Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Email : c.bohnet@fzd.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de/

Weitere Berichte zu: Kristalloberfläche Nanometer

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie