Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschneller Blick in Atome und Moleküle

20.06.2008
Physiker stellen mit ultrakurzen Lichtpulsen einen neuen Rekord in der Kurzzeittechnologie auf

Wer Bewegungen von Elektronen in Atomen beobachten will, der muss schnell sein. Diese Schnelligkeit hat jetzt ein Physikerteam des Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität in München bewiesen. Mit speziellen Laserpulsen haben die Forscher Lichtblitze erzeugt, die nur noch rund 80 Attosekunden dauern. Eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde. Damit stoßen sie erstmals in den Zeitbereich von weniger als 100 Attosekunden vor. Dies ist ein wichtiger Schritt auf dem Weg, schnellste Elektronenbewegungen innerhalb von Atomen, Molekülen und Festkörpern in Echtzeit zu beobachten. Solche Einblicke können zur Entwicklung neuer Lichtquellen führen. Darüber hinaus helfen sie, mikroskopische Ursachen von Krankheiten zu verstehen und die elektronische Datenverarbeitung weiter zu beschleunigen.


In einem der Herzstücke der Anlage, der Beamline AS-1, entstehen die ultrakurzen Lichtblitze. Das Foto zeigt eine Düse, aus der Edelgas strömt. Auf das Edelgas wird ein Laserblitz fokussiert. Dadurch werden die Edelgasatome angeregt und senden anschließend Lichtblitze im Attosekundenbereich aus. Bild: Thorsten Naeser


In einer Vakuumkammer werden extrem ultraviolette Attosekundenpulse (als blauer Strahl gekennzeichnet) über einen Spiegel (rechts) auf eine Probe aus Neongas fokussiert. Gleichzeitig trifft ein infraroter Laserpuls auf die Probe (roter Strahl). Die beiden kombinierten Lichtstrahlen machen Elektronenbewegungen in den bestrahlten Atomen sichtbar. Bild: Thorsten Naeser, Bildbearbeitung: Christian Hackenberger

Im Mikrokosmos bewegen sich Elektronen rasend schnell. Im Zeitraum weniger Attosekunden springen die Teilchen innerhalb von Atomen, zwischen benachbarten Atomen in einem Molekül oder einem Festkörper von einem Ort zum anderen. Im Körper übertragen sie so biologische Informationen in den Nerven, können aber auch Schaden anrichten, indem sie Biomoleküle verformen und damit Fehlfunktionen auslösen. Wenn die Elektronen umher springen, senden sie Licht aus, im Bereich des sichtbaren, ultravioletten oder Röntgenspektrums. Diese Bewegungen können Forscher umso schärfer abbilden, je kürzer die Lichtpulse sind, mit denen sie abgeblitzt werden. Ein Fotograf, der einen Kurzstreckenläufer in Aktion knipsen will, benutzt für ein scharfes Foto schließlich auch eine kürzere Belichtungszeit.

Zu diesem Zweck hat das Physikerteam um Ferenc Krausz vom Max-Planck-Institut für Quantenoptik (MPQ) in Garching und der Ludwig-Maximilians-Universität München (LMU) in Zusammenarbeit mit Kollegen von der Advanced Light Source in Berkeley (USA) sowie Ulf Kleineberg von der LMU ultrakurze Lichtblitze erzeugt. "Lichtpulse, die kürzer als 100 Attosekunden sind, werden uns den Zugang zu bisher nicht sichtbaren Elektronenbewegungen gewähren. Vor allem Wechselwirkungen der Elektronen untereinander werden wir in Echtzeit beobachten können", erklärt Eleftherios Goulielmakis, Forschungsgruppenleiter im Team von Ferenc Krausz.

Dazu lösen die Forscher eine Art Kettenreaktion aus, an deren Ende die Elektronen eines Edelgases die gewünschten Lichtblitze aussenden. Am Anfang der Kette steht nahes, infrarotes Laserlicht, das ein starkes elektrisches Feld besitzt. Mit diesem Licht erzeugen die Wissenschaftler Laserblitze, deren Feld kaum mehr als eine einzige kräftige Schwingung mit einer Periode von etwa 2,5 Femtosekunden (eine Femtosekunde sind 1000 Attosekunden) aus. Das heißt: Die Lichtwelle beinhaltet nur mehr zwei hohe Wellenberge und ein tiefes Wellental dazwischen. An den Spitzen dieser Berge und am Tiefpunkt des Tales ist die Kraft am stärksten, die das elektrische Lichtfeld auf
... mehr zu:
»Atom »Attosekunde »Lichtpuls

die Elektronen ausübt. Dadurch schlägt es Elektronen aus den Edelgasatomen heraus, die die Garchinger Physiker in ihrem Experiment verwendet haben. Übrig bleiben nur Ionenrümpfe. Durch die Schwingung des Lichtfeldes ändert die Kraft ihre Richtung und schleudert die Elektronen wenig später wieder zu den Ionenrümpfen zurück. Beim Auftreffen rufen die freien Elektronen extrem schnelle Elektronenschwingungen hervor, die nur noch Attosekunden dauern und dadurch wiederum Lichtblitze in Attosekunden-Zeiträumen aussenden. Diese Blitze befinden sich dann im Bereich des extremen ultravioletten Lichts von circa 10 bis 20 Nanometer Wellenlänge.

Die kontrollierte Erzeugung dieser einzigen kräftigen Lichtschwingung erlaubte es dem Garchinger Forscherteam nun erstmals, dreimal Elektronen innerhalb eines einzelnen Laserpulses freizusetzen. Bei ihrer Rückkehr zum Ionenrumpf senden sie dann exakt drei Attosekundenpulse aus. Einer dieser drei Pulse besitzt eine besonders hohe Intensität, er besteht aus mehr als 100 Millionen Photonen. Diesen Puls filtert das Team mit speziellen Röntgenspiegeln heraus, die die Arbeitsgruppe von Ulf Kleineberg entwickelt hat, und erzeugt dadurch einen einzelnen Röntgenblitz mit einer Dauer von 80 Attosekunden. Mit ihrer enormen Kürze und Intensität bilden die Attosekundenpulse der Forscher eine neue Generation.

Mit ihren Experimenten ermöglichen die Garchinger Physiker, bisher unbeobachtete mikroskopische Vorgänge sichtbar zu machen. "Elektronen sind in lebenswichtigen mikroskopischen Prozessen genauso wie in der Technik allgegenwärtig. Ihre blitzschnelle Bewegung bestimmt den Ablauf aller biologischen und chemischen Prozesse, wie auch die Geschwindigkeit der Mikroprozessoren, das Herzstück von Computern", erklärt Ferenc Krausz. Mancher dieser Prozesse, wie etwa die Energieübertragung zwischen Elektronen oder die Reaktion der Teilchen auf äußere Einflüsse, kann innerhalb weniger Attosekunden vonstatten gehen. "Dank der Attosekundentechnik werden wir eines Tages in Molekülen Elektronenbewegungen, die etwa für eine Krebserkrankung verantwortlich sind, in Zeitlupe beobachten. Ebenso werden wir elektrischen Strom in atomaren Schaltkreisen mit Infrarotlicht viele Billionen Mal pro Sekunde schalten können", so Ferenc Krausz.

Originalveröffentlichung:

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg
Single-Cycle Nonlinear Optics
Science, 20. Juni 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Attosekunde Lichtpuls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Nanoinjektion steigert Überlebensrate von Zellen
22.02.2017 | Universität Bielefeld

nachricht Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung
21.02.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Internationale Fachkonferenz „InnoTesting“ am 23. und 24. Februar 2017 in Wildau

22.02.2017 | Veranstaltungen

Wunderwelt der Mikroben

22.02.2017 | Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ursache für eine erbliche Muskelerkrankung entdeckt

22.02.2017 | Medizin Gesundheit

Möglicher Zell-Therapieansatz gegen Zytomegalie

22.02.2017 | Biowissenschaften Chemie

Meeresforschung in Echtzeit verfolgen

22.02.2017 | Geowissenschaften