Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschneller Blick in Atome und Moleküle

20.06.2008
Physiker stellen mit ultrakurzen Lichtpulsen einen neuen Rekord in der Kurzzeittechnologie auf

Wer Bewegungen von Elektronen in Atomen beobachten will, der muss schnell sein. Diese Schnelligkeit hat jetzt ein Physikerteam des Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität in München bewiesen. Mit speziellen Laserpulsen haben die Forscher Lichtblitze erzeugt, die nur noch rund 80 Attosekunden dauern. Eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde. Damit stoßen sie erstmals in den Zeitbereich von weniger als 100 Attosekunden vor. Dies ist ein wichtiger Schritt auf dem Weg, schnellste Elektronenbewegungen innerhalb von Atomen, Molekülen und Festkörpern in Echtzeit zu beobachten. Solche Einblicke können zur Entwicklung neuer Lichtquellen führen. Darüber hinaus helfen sie, mikroskopische Ursachen von Krankheiten zu verstehen und die elektronische Datenverarbeitung weiter zu beschleunigen.


In einem der Herzstücke der Anlage, der Beamline AS-1, entstehen die ultrakurzen Lichtblitze. Das Foto zeigt eine Düse, aus der Edelgas strömt. Auf das Edelgas wird ein Laserblitz fokussiert. Dadurch werden die Edelgasatome angeregt und senden anschließend Lichtblitze im Attosekundenbereich aus. Bild: Thorsten Naeser


In einer Vakuumkammer werden extrem ultraviolette Attosekundenpulse (als blauer Strahl gekennzeichnet) über einen Spiegel (rechts) auf eine Probe aus Neongas fokussiert. Gleichzeitig trifft ein infraroter Laserpuls auf die Probe (roter Strahl). Die beiden kombinierten Lichtstrahlen machen Elektronenbewegungen in den bestrahlten Atomen sichtbar. Bild: Thorsten Naeser, Bildbearbeitung: Christian Hackenberger

Im Mikrokosmos bewegen sich Elektronen rasend schnell. Im Zeitraum weniger Attosekunden springen die Teilchen innerhalb von Atomen, zwischen benachbarten Atomen in einem Molekül oder einem Festkörper von einem Ort zum anderen. Im Körper übertragen sie so biologische Informationen in den Nerven, können aber auch Schaden anrichten, indem sie Biomoleküle verformen und damit Fehlfunktionen auslösen. Wenn die Elektronen umher springen, senden sie Licht aus, im Bereich des sichtbaren, ultravioletten oder Röntgenspektrums. Diese Bewegungen können Forscher umso schärfer abbilden, je kürzer die Lichtpulse sind, mit denen sie abgeblitzt werden. Ein Fotograf, der einen Kurzstreckenläufer in Aktion knipsen will, benutzt für ein scharfes Foto schließlich auch eine kürzere Belichtungszeit.

Zu diesem Zweck hat das Physikerteam um Ferenc Krausz vom Max-Planck-Institut für Quantenoptik (MPQ) in Garching und der Ludwig-Maximilians-Universität München (LMU) in Zusammenarbeit mit Kollegen von der Advanced Light Source in Berkeley (USA) sowie Ulf Kleineberg von der LMU ultrakurze Lichtblitze erzeugt. "Lichtpulse, die kürzer als 100 Attosekunden sind, werden uns den Zugang zu bisher nicht sichtbaren Elektronenbewegungen gewähren. Vor allem Wechselwirkungen der Elektronen untereinander werden wir in Echtzeit beobachten können", erklärt Eleftherios Goulielmakis, Forschungsgruppenleiter im Team von Ferenc Krausz.

Dazu lösen die Forscher eine Art Kettenreaktion aus, an deren Ende die Elektronen eines Edelgases die gewünschten Lichtblitze aussenden. Am Anfang der Kette steht nahes, infrarotes Laserlicht, das ein starkes elektrisches Feld besitzt. Mit diesem Licht erzeugen die Wissenschaftler Laserblitze, deren Feld kaum mehr als eine einzige kräftige Schwingung mit einer Periode von etwa 2,5 Femtosekunden (eine Femtosekunde sind 1000 Attosekunden) aus. Das heißt: Die Lichtwelle beinhaltet nur mehr zwei hohe Wellenberge und ein tiefes Wellental dazwischen. An den Spitzen dieser Berge und am Tiefpunkt des Tales ist die Kraft am stärksten, die das elektrische Lichtfeld auf
... mehr zu:
»Atom »Attosekunde »Lichtpuls

die Elektronen ausübt. Dadurch schlägt es Elektronen aus den Edelgasatomen heraus, die die Garchinger Physiker in ihrem Experiment verwendet haben. Übrig bleiben nur Ionenrümpfe. Durch die Schwingung des Lichtfeldes ändert die Kraft ihre Richtung und schleudert die Elektronen wenig später wieder zu den Ionenrümpfen zurück. Beim Auftreffen rufen die freien Elektronen extrem schnelle Elektronenschwingungen hervor, die nur noch Attosekunden dauern und dadurch wiederum Lichtblitze in Attosekunden-Zeiträumen aussenden. Diese Blitze befinden sich dann im Bereich des extremen ultravioletten Lichts von circa 10 bis 20 Nanometer Wellenlänge.

Die kontrollierte Erzeugung dieser einzigen kräftigen Lichtschwingung erlaubte es dem Garchinger Forscherteam nun erstmals, dreimal Elektronen innerhalb eines einzelnen Laserpulses freizusetzen. Bei ihrer Rückkehr zum Ionenrumpf senden sie dann exakt drei Attosekundenpulse aus. Einer dieser drei Pulse besitzt eine besonders hohe Intensität, er besteht aus mehr als 100 Millionen Photonen. Diesen Puls filtert das Team mit speziellen Röntgenspiegeln heraus, die die Arbeitsgruppe von Ulf Kleineberg entwickelt hat, und erzeugt dadurch einen einzelnen Röntgenblitz mit einer Dauer von 80 Attosekunden. Mit ihrer enormen Kürze und Intensität bilden die Attosekundenpulse der Forscher eine neue Generation.

Mit ihren Experimenten ermöglichen die Garchinger Physiker, bisher unbeobachtete mikroskopische Vorgänge sichtbar zu machen. "Elektronen sind in lebenswichtigen mikroskopischen Prozessen genauso wie in der Technik allgegenwärtig. Ihre blitzschnelle Bewegung bestimmt den Ablauf aller biologischen und chemischen Prozesse, wie auch die Geschwindigkeit der Mikroprozessoren, das Herzstück von Computern", erklärt Ferenc Krausz. Mancher dieser Prozesse, wie etwa die Energieübertragung zwischen Elektronen oder die Reaktion der Teilchen auf äußere Einflüsse, kann innerhalb weniger Attosekunden vonstatten gehen. "Dank der Attosekundentechnik werden wir eines Tages in Molekülen Elektronenbewegungen, die etwa für eine Krebserkrankung verantwortlich sind, in Zeitlupe beobachten. Ebenso werden wir elektrischen Strom in atomaren Schaltkreisen mit Infrarotlicht viele Billionen Mal pro Sekunde schalten können", so Ferenc Krausz.

Originalveröffentlichung:

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg
Single-Cycle Nonlinear Optics
Science, 20. Juni 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Attosekunde Lichtpuls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten

Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent

25.09.2017 | Energie und Elektrotechnik

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit