Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschneller Blick in Atome und Moleküle

20.06.2008
Physiker stellen mit ultrakurzen Lichtpulsen einen neuen Rekord in der Kurzzeittechnologie auf

Wer Bewegungen von Elektronen in Atomen beobachten will, der muss schnell sein. Diese Schnelligkeit hat jetzt ein Physikerteam des Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität in München bewiesen. Mit speziellen Laserpulsen haben die Forscher Lichtblitze erzeugt, die nur noch rund 80 Attosekunden dauern. Eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde. Damit stoßen sie erstmals in den Zeitbereich von weniger als 100 Attosekunden vor. Dies ist ein wichtiger Schritt auf dem Weg, schnellste Elektronenbewegungen innerhalb von Atomen, Molekülen und Festkörpern in Echtzeit zu beobachten. Solche Einblicke können zur Entwicklung neuer Lichtquellen führen. Darüber hinaus helfen sie, mikroskopische Ursachen von Krankheiten zu verstehen und die elektronische Datenverarbeitung weiter zu beschleunigen.


In einem der Herzstücke der Anlage, der Beamline AS-1, entstehen die ultrakurzen Lichtblitze. Das Foto zeigt eine Düse, aus der Edelgas strömt. Auf das Edelgas wird ein Laserblitz fokussiert. Dadurch werden die Edelgasatome angeregt und senden anschließend Lichtblitze im Attosekundenbereich aus. Bild: Thorsten Naeser


In einer Vakuumkammer werden extrem ultraviolette Attosekundenpulse (als blauer Strahl gekennzeichnet) über einen Spiegel (rechts) auf eine Probe aus Neongas fokussiert. Gleichzeitig trifft ein infraroter Laserpuls auf die Probe (roter Strahl). Die beiden kombinierten Lichtstrahlen machen Elektronenbewegungen in den bestrahlten Atomen sichtbar. Bild: Thorsten Naeser, Bildbearbeitung: Christian Hackenberger

Im Mikrokosmos bewegen sich Elektronen rasend schnell. Im Zeitraum weniger Attosekunden springen die Teilchen innerhalb von Atomen, zwischen benachbarten Atomen in einem Molekül oder einem Festkörper von einem Ort zum anderen. Im Körper übertragen sie so biologische Informationen in den Nerven, können aber auch Schaden anrichten, indem sie Biomoleküle verformen und damit Fehlfunktionen auslösen. Wenn die Elektronen umher springen, senden sie Licht aus, im Bereich des sichtbaren, ultravioletten oder Röntgenspektrums. Diese Bewegungen können Forscher umso schärfer abbilden, je kürzer die Lichtpulse sind, mit denen sie abgeblitzt werden. Ein Fotograf, der einen Kurzstreckenläufer in Aktion knipsen will, benutzt für ein scharfes Foto schließlich auch eine kürzere Belichtungszeit.

Zu diesem Zweck hat das Physikerteam um Ferenc Krausz vom Max-Planck-Institut für Quantenoptik (MPQ) in Garching und der Ludwig-Maximilians-Universität München (LMU) in Zusammenarbeit mit Kollegen von der Advanced Light Source in Berkeley (USA) sowie Ulf Kleineberg von der LMU ultrakurze Lichtblitze erzeugt. "Lichtpulse, die kürzer als 100 Attosekunden sind, werden uns den Zugang zu bisher nicht sichtbaren Elektronenbewegungen gewähren. Vor allem Wechselwirkungen der Elektronen untereinander werden wir in Echtzeit beobachten können", erklärt Eleftherios Goulielmakis, Forschungsgruppenleiter im Team von Ferenc Krausz.

Dazu lösen die Forscher eine Art Kettenreaktion aus, an deren Ende die Elektronen eines Edelgases die gewünschten Lichtblitze aussenden. Am Anfang der Kette steht nahes, infrarotes Laserlicht, das ein starkes elektrisches Feld besitzt. Mit diesem Licht erzeugen die Wissenschaftler Laserblitze, deren Feld kaum mehr als eine einzige kräftige Schwingung mit einer Periode von etwa 2,5 Femtosekunden (eine Femtosekunde sind 1000 Attosekunden) aus. Das heißt: Die Lichtwelle beinhaltet nur mehr zwei hohe Wellenberge und ein tiefes Wellental dazwischen. An den Spitzen dieser Berge und am Tiefpunkt des Tales ist die Kraft am stärksten, die das elektrische Lichtfeld auf
... mehr zu:
»Atom »Attosekunde »Lichtpuls

die Elektronen ausübt. Dadurch schlägt es Elektronen aus den Edelgasatomen heraus, die die Garchinger Physiker in ihrem Experiment verwendet haben. Übrig bleiben nur Ionenrümpfe. Durch die Schwingung des Lichtfeldes ändert die Kraft ihre Richtung und schleudert die Elektronen wenig später wieder zu den Ionenrümpfen zurück. Beim Auftreffen rufen die freien Elektronen extrem schnelle Elektronenschwingungen hervor, die nur noch Attosekunden dauern und dadurch wiederum Lichtblitze in Attosekunden-Zeiträumen aussenden. Diese Blitze befinden sich dann im Bereich des extremen ultravioletten Lichts von circa 10 bis 20 Nanometer Wellenlänge.

Die kontrollierte Erzeugung dieser einzigen kräftigen Lichtschwingung erlaubte es dem Garchinger Forscherteam nun erstmals, dreimal Elektronen innerhalb eines einzelnen Laserpulses freizusetzen. Bei ihrer Rückkehr zum Ionenrumpf senden sie dann exakt drei Attosekundenpulse aus. Einer dieser drei Pulse besitzt eine besonders hohe Intensität, er besteht aus mehr als 100 Millionen Photonen. Diesen Puls filtert das Team mit speziellen Röntgenspiegeln heraus, die die Arbeitsgruppe von Ulf Kleineberg entwickelt hat, und erzeugt dadurch einen einzelnen Röntgenblitz mit einer Dauer von 80 Attosekunden. Mit ihrer enormen Kürze und Intensität bilden die Attosekundenpulse der Forscher eine neue Generation.

Mit ihren Experimenten ermöglichen die Garchinger Physiker, bisher unbeobachtete mikroskopische Vorgänge sichtbar zu machen. "Elektronen sind in lebenswichtigen mikroskopischen Prozessen genauso wie in der Technik allgegenwärtig. Ihre blitzschnelle Bewegung bestimmt den Ablauf aller biologischen und chemischen Prozesse, wie auch die Geschwindigkeit der Mikroprozessoren, das Herzstück von Computern", erklärt Ferenc Krausz. Mancher dieser Prozesse, wie etwa die Energieübertragung zwischen Elektronen oder die Reaktion der Teilchen auf äußere Einflüsse, kann innerhalb weniger Attosekunden vonstatten gehen. "Dank der Attosekundentechnik werden wir eines Tages in Molekülen Elektronenbewegungen, die etwa für eine Krebserkrankung verantwortlich sind, in Zeitlupe beobachten. Ebenso werden wir elektrischen Strom in atomaren Schaltkreisen mit Infrarotlicht viele Billionen Mal pro Sekunde schalten können", so Ferenc Krausz.

Originalveröffentlichung:

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg
Single-Cycle Nonlinear Optics
Science, 20. Juni 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Attosekunde Lichtpuls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise