Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues vom "Skelett" der Moleküle

13.06.2008
Neue Technik erlaubt es, Elektronenhülle und Atomkerne gleichzeitig abzubilden

Eine Art Röntgenbild, das bei einem Molekül gleichzeitig die Elektronenhülle an der Oberfläche (der Haut) und das innere Gerüste aus Atomkernen (dem Skelett) abbildet, ermöglicht eine neue Technik, die Atomphysiker der Universität Frankfurter in Zusammenarbeit mit kanadischen Kollegen entwickelt haben.

Mithilfe ultrakurzer Laserpulse und des Frankfurter COLTRIMS-Detektors gelang es, in einer einzigen Messung sowohl Abstand der Kerne, als auch die Struktur der bindenden Elektronen-Orbitale zu bestimmen. Dies ist eine wichtige Etappe auf dem Weg zu einem Traum der Atomphysiker und Chemiker: Sie möchten quasi in Echtzeit beobachten, wie Moleküle sich währende einer chemischen Reaktion verändern. "Umfassende Strukturinformationen können wir jetzt dank der COLTRIMS-Technologie gewinnen, nun geht es darum, Bilder in so schneller Folge aufzunehmen, dass wir einen Film erhalten", erklärt Prof. Reinhard Dörner vom Institut für Kernphysik der Universität Frankfurt.

Moritz Meckel, inzwischen Doktorand in der Gruppe von Dörner, führte die Messungen während eines einjährigen Aufenthaltes am National Research Council in Ottawa durch. Die großflächigen Detektorplatten des COLTRIMS ermöglichen es, alle geladenen "Bruchstücke" von Atom- und Molekülumwandlungen mit hoher räumlicher und zeitlicher Genauigkeit nachweisen, so dass man Reaktionen in drei Dimension rekonstruieren kann. Wie die Forscher in der aktuellen Ausgabe der Fachzeitschrift "Science" mitteilen, lag der Schlüssel für den jetzigen Durchbruch in der Datenanalyse, denn der gesuchte Effekt war so klein wie eine Unebenheit auf der Flanke eines großen Berges. Meckel erinnert sich an die Aufregung seiner Kollegen, als er zum ersten Mal die so analysierten Daten vorstellte. Als Testobjekte hatte er Stickstoff und Sauerstoff-Moleküle ausgewählt, weil deren Elektronenstruktur bereits bekannt ist und er so überprüfen konnte, ob seine Datenanalyse richtig war: "Allen fiel es wie Schuppen von den Augen, dass dies die richte Art war, die gesuchten Informationen im Datensatz zu finden."

... mehr zu:
»Atomkern »Laserpuls »Molekül

Die neuartige Methode arbeitet mit einem ultrakurzen Laserpuls, der die Moleküle ausrichtet. Ein zweiter, wesentlich stärkerer Laserpuls, der anschließend auf das Molekül geschossen wird, hat ein so starkes elektrisches Feld, dass ein Elektron aus dem Molekül herausgezogen wird.

Ungefähr die Hälfte der herausgelösten Elektronen fliegt direkt zum Detektor. Die Verteilung dieser "direkten" Elektronen trägt, wie die Forscher zeigten, den "Fingerabdruck" des ionisierten Molekül-Orbitals. Prof. Dr. Paul Corkum, in dessen Labor die Messungen durchgeführt wurden, vergleicht diesen Effekt mit einem Raster-Tunnelmikroskop, das um das Molekül herumgefahren werden kann. So erhält man Informationen über die Elektronenhülle, die "Haut" des Moleküls.

Die andere Hälfte der herausgelösten Elektronen wird im elektrischen Feld des Lasers auf das Molekül hin zurück beschleunigt und kann dort elastisch streuen - in direkter Analogie zu konventionellen Elektronenstreuexperimenten, in denen die Abstände zwischen den Atomkernen anhand von Beugungsmustern bestimmt werden. Da jedoch das Streuelektron direkt am zu untersuchenden Molekül erzeugt wird, ist die Wahrscheinlichkeit einer Streuung um viele Größenordnungen höher. Man erhält ein entsprechend scharfes Bild des "Knochengerüsts". Hinzu kommt, dass die Streuung innerhalb einer halben, extrem kurzen Schwingungsperiode des Laserfeldes von wenigen Femtosekunden stattfindet. Damit ist prinzipiell eine Zeitauflösung vom Bruchteil einer Schwingungsperiode möglich.

Genau darin sieht Prof. Dörner das große Potential in der Methode: "Moleküle und deren Orbitale können zeitaufgelöst untersucht werden." Nur wenige Femtosekunden dauernde Laserpulse erlauben es, in chemischen Reaktionen die Umordnung der Atome zu verfolgen. Mithilfe der Femtochemie, für deren Entwicklung Ahmed Zewail 1999 mit dem Chemie-Nobelpreis ausgezeichnet wurde, kann man die Bindungsenergie der Elektronen während einer Reaktion in Echtzeit messen. Die Frankfurter Methode verspricht nun, zum ersten mal auch die Änderung der elektronischen Struktur in Echtzeit zu verfolgen.

Informationen
Prof. Reinhard Dörner, Tel.: (069) 798-47003, doerner@atom.uni-frankfurt.de, Dr. Markus Schöffler, Tel.: (069) 798-47004, schoeffler@atom.uni-frankfurt.de, Institut für Kernphysik, Campus Riedberg, Universität Frankfurt.

Die GOETHE-UNIVERSITÄT ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. Vor 94 Jahren von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit 34 seit 2000 eingeworbenen Stiftungsprofessuren nimmt die GOETHE-UNI den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigt sich die GOETHE-UNI als eine der forschungsstärksten Hochschulen.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30,
E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de
http://www.muk.uni-frankfurt.de/pm/pm2008/0608/113/index.html

Weitere Berichte zu: Atomkern Laserpuls Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics