Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Dreh mit dem Wirbel

10.06.2008
Wie die renommierten US-Fachzeitschriften "Physical Review Letters" und "Science" (Online-Ausgabe vom 23. Mai 2008) berichten, gelang es Forschern der Universität Hamburg, mit Hilfe von zeitauflösender Röntgen-Mikroskopie, die Dynamik der Magnetisierung von kleinen ferromagnetischen Elementen, die durch Spinströme zum Schwingen angeregt wurden, zu beobachten.

Diese Forschungsergebnisse erweitern das benötigte grundlegende Verständnis für den Einsatz in neuartigen magnetischen Speichermedien.

Magnetische Festplattenspeicher sind heutzutage in fast jedem Haushalt vorhanden und finden sogar in Videokameras, Harddisk-Video-Rekordern und Set-Top-Boxen Gebrauch. Das jahrzehntelange Wachstum der Speicherdichte auf heute über eine Milliarde Bits pro Quadratmillimeter droht in den nächsten Jahren an das Limit zu stoßen; die kleinsten magnetischen Bits sind nämlich bei Raumtemperaturen nicht mehr stabil, sondern verlieren ihr "Gedächtnis".

Aus diesem Grund machen sich bereits jetzt Forscher in aller Welt Gedanken über mögliche Nachfolger zu herkömmlichen Datenspeichermethoden. Als erfolgversprechende Alternative sind Konzepte im Gespräch, in denen Festkörperspeicher mit Hilfe von Spinströmen ausgelesen oder geschrieben werden. Spinströme nutzen eine weitere, bisher weitgehend unbeachtete Größe von Elektronen: Ihr Eigendrehmoment oder Spin.

... mehr zu:
»Magnetisierung »Spinströme

Mithilfe von Spinströmen lässt sich die Magnetisierung sehr kleiner Strukturen punktgenau auslesen und auch verändern, indem die Elektronen ihre Spinausrichtung auf die Magnetisierung übertragen. Dieser Prozess wird "Spin-Transfer" genannt. Für die Entdeckung eines verwandten Mechanismus, den sogenannten Riesenmagnetowiderstand, erhielten Peter Grünberg und Albert Fert letztes Jahr den Physiknobelpreis. Durch das punktgenaue Lesen und Schreiben mit dem Spin-Transfer-Effekt lassen sich in Zukunft eventuell noch kleinere magnetische Bits schalten als bisher.

Den Einfluss von Spinströmen auf die Magnetisierung haben Dr. Markus Bolte und Mitarbeiter des Instituts für Angewandte Physik der Universität Hamburg nun in Zusammenarbeit mit dem I. Institut für Theoretische Physik der Universität Hamburg, dem Max-Planck-Institut für Metallforschung in Stuttgart, der Universität Ghent in Belgien und der Lawrence Berkeley Laboratories in Berkeley, Kalifornien untersucht. Zum ersten Mal konnten sie mit einer zeitlichen Auflösung von weniger als einer Milliardstel Sekunde die Wechselwirkung zwischen Spinströmen und Magnetisierung verfolgen.

Als ultraschnelle "Kamera" wurde dabei das Röntgen-Licht eines Elektronensynchrotrons verwendet. In einem solchen Synchrotron entsteht das Röntgen-Licht, indem Elektronenpakete, die mit Lichtgeschwindigkeit um den Ring fliegen, abgelenkt werden. Das Licht wird dann durch spezielle Linsen auf die magnetischen Strukturen geschickt. Eine besonders schnelle lichtempfindliche Diode misst jedes einzelne Röntgen-Lichtquant und wandelt es in elektrische Signale um. In den untersuchten magnetischen Quadraten bildet sich natürlicherweise eine magnetische Singularität, ein sogenannter Vortex aus, bei dem die Magnetisierung aus der Ebene zeigt. Da der Vortex nur eine von zwei Richtungen annehmen kann, werden Vortizes als mögliche nichtflüchtige Speichermedien gehandelt. Die Vortizes können durch hochfrequente Wechselströme zum Schwingen und zum Umklappen gebracht werden.

Herr Bolte beschreibt die Ergebnisse der Messungen: "Dank der hervorragenden zeitlichen und örtlichen Auflösung des Mikroskops konnten wir die Bewegung des Vortizes extrem genau verfolgen." Er sagt weiter: "Wir konnten zeigen, dass nicht nur der Elektronenspin auf die Magnete wirkt, sondern auch das Magnetfeld, das jeden elektrischen Strom umgibt. Mit unserer Messmethode konnten wir bestehende Vorhersagen über die Wechselwirkung zwischen Spinströmen und Ferromagneten erweitern und besser quantifizieren." Diese Entdeckung hat Auswirkungen auf die mögliche Realisierbarkeit solcher nichtflüchtiger Datenspeicher. Die Forschergruppe arbeitet bereits an konkreten Umsetzungsmöglichkeiten. In Zusammenarbeit mit dem Arbeitsbereich TIS des Departments für Informatik entwickeln sie Modelle, die es ihnen erlauben, das Verhalten solcher Strukturen in komplexen Elektronikschaltkreisen vorherzusagen.

Originale Veröffentlichung:

"Time-Resolved X-ray Microscopy of Spin-Torque-Induced Magnetic Vortex Gyration"
M. Bolte, G. Meier, A. Drews, R. Eiselt, L. Bocklage, B. Krüger, S. Bohlens, T. Tyliszczak, A. Vansteenkiste, B. Van Waeyenberge, K. W. Chou, A. Puzic, and H. Stoll
Physical Review Letters 100, 176601 (2008)
doi:10.1103/PhysRevLett.100.176601

Heiko Fuchs | idw
Weitere Informationen:
http://link.aps.org/abstract/PRL/v100/e176601
http://www.sciencemag.org/content/vol320/issue5879/twil.dtl#320/5879/987b
http://www.sfb668.de

Weitere Berichte zu: Magnetisierung Spinströme

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

nachricht Rotierende Rugbybälle unter den massereichsten Galaxien
23.05.2018 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics