Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diamant erlaubt Quantencomputer bei Raumtemperatur

09.06.2008
Stickstoff-Verunreinigungen ermöglichen Adressieren von Quantenbits

Forscher des 3. Physikalischen Instituts der Universität Stuttgart haben gezeigt, dass sie verschränkte Quantenbits (Qubits) in einem mit Stickstoff versetzten Diamant gezielt adressieren können. Das Material stellt Quantencomputer in Aussicht, die bei Raumtemperatur arbeiten, so die Wissenschaftler.

Um für praktische Aufgaben geeignete Quantencomputer zu ermöglichen, muss allerdings die Zahl der verschränkten Qubits von derzeit zwei oder drei deutlich gesteigert werden. "Wir sehen im Moment keinen physikalischen Grund, warum das bei unserem Ansatz nicht funktionieren sollte", gibt sich Institutsleiter Jörg Wrachtrup gegenüber pressetext vorsichtig optimistisch.

Die Wissenschaftler verwenden hochwertige Diamanten, die möglichst rein aus Kohlenstoff ohne Fremdsubstanzen bestehen. Durch den Einschuss von Stickstoff-Atomen werden beabsichtigte Verunreinigungen erzeugt, die Farbe des Diamanten ändert sich zu pink. Für die Forscher entscheidend sind allerdings die Defektknoten in der Gitterstruktur des Diamanten, die bei den Einschüssen entstehen. Kohlenstoffatome des Isotops C13, das rund ein Prozent des natürlichen Kohlenstoffs ausmacht, haben ein magnetisches Moment und wechselwirken mit dem Stickstoffatom. Das erlaubt den Forschern, die C13-Atome gezielt in jene verschränkten Quantenzustände bringen, die Quantencomputer möglich machen. Für Systeme aus zwei oder drei Qubits konnten die Forscher im Experiment selbst bei Raumtemperatur Kohärenzzeiten im Millisekundenbereich erreichen. Dies ist, so die Forscher, für aufwendige Quantenoperationen ausreichend.

Für einen Quantencomputer, der wirklich komplexe Aufgaben bewältigen soll, müssen allerdings wesentlich größere Zahlen an Qubits miteinander verschränkt werden. Die Forscher sind hoffnungsvoll, ihren Ansatz auf größere Systeme skalieren zu können. "Wir glauben, fünf bis sechs Qubits pro Defektknoten verschränken zu können", gibt Wrachtrup gegenüber pressetext an. Weiters werde angestrebt, gezielt mehrere Defektstellen im Diamantgitter in Abständen von 50 bis 100 Nanometern zu erzeugen. Mehrere dieser Defektknoten sollen dann miteinander verschränkt werden, um die Gesamtzahl der Qubits zu steigern, so Wrachtrup. Theoretische Hindernisse sieht er dafür derzeit nicht, betont jedoch, dass sich praktische Herausforderungen beispielsweise in der Materialphysik offenbaren könnten. Bis Quantencomputer bei Raumtemperatur für den praktischen Einsatz verwirklicht werden, könnte es also noch dauern.

Die Ergebnisse des Wissenschaftlerteams, das neben den Stuttgartern auch Forscher aus Japan und den USA umfasst, wurden gestern, Freitag, im Magazin Science veröffentlicht.

Thomas Pichler | pressetext.deutschland
Weitere Informationen:
http://www.pi3.uni-stuttgart.de
http://www.sciencemag.org

Weitere Berichte zu: Diamant Quantencomputer Raumtemperatur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit