Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätselhafte Eisenfabrik im Universum

08.07.2002



Wissenschaftler finden mit dem Röntgensatelliten XMM-Newton in einem Quasar ungewöhnlich große Mengen dieses Elements


Wie kommt das Eisen in die Welt? Den Theorien der Astrophysiker zufolge wird es im Inneren von massereichen Sternen erbrütet und - wenn diese als Supernovae explodieren - ins All geschleudert. Dort vermischt es sich mit Materie, aus der wiederum neue Sterne entstehen. Auch unsere Sonne enthält als Stern einer späteren Generation einen gewissen Eisenanteil. Prof. Günther Hasinger und Dr. Stefanie Komossa vom Max-Planck-Institut für extraterrestrische Physik in Garching sowie Dr. Norbert Schartel von der Europäischen Raumfahrtagentur ESA ist jetzt eine erstaunliche Entdeckung gelungen: Spektralbeobachtungen mit dem Röntgenobservatorium XMM-Newton ergaben, dass der Quasar APM 08279+5255 etwa drei Mal mehr Eisen birgt als heute im Sonnensystem vorhanden ist. Den Quasar sehen wir zu einer Zeit, da das Universum erst rund 1,5 Milliarden Jahre alt war; die Sonne dagegen entstand etwa neun Milliarden Jahre nach dem Urknall. Das heißt: In dem jungen Quasar existierte bereits mehr Eisen als in unserem viel älteren Sonnensystem. Entweder gibt es eine bisher unbekannte, jedoch effizientere Art der Eisenproduktion, oder das Universum war zu dem Zeitpunkt, als der Quasar sein Licht aussandte, wesentlich älter als bisher angenommen (ApJ Letters Vol. 573, L77, 10. Juli 2002).Einleitung


Der Quasar APM 08279+5255 ist eines der leuchtkräftigsten Objekte im gesamten Universum. Er strahlt über eine Billiarde (1015) Mal mehr Energie ab als unsere Sonne. Nur deshalb können wir trotz seiner großen Entfernung noch intensive Strahlung von ihm auffangen. Diese Leuchtkraft speist sich hauptsächlich aus dem "Absturz" von Materie in ein gigantisches Schwarzes Loch im Quasarzentrum. Das gasförmige Material heizt sich stark auf und sendet Röntgenstrahlen aus - quasi als "letzten Hilfeschrei", bevor es in dem Schwarzen Loch verschwindet. Ein Teil der eingefangenen Materie wird jedoch durch den starken Lichtdruck des Zentralobjekts wieder nach außen transportiert (Abbildung 1). Bei APM 08279+5255 sehen wir das Schwarze Loch zufällig durch den Schleier der ausströmenden Materie. Zusätzlich verstärkt eine so genannte Gravitationslinse das Licht des Quasars.


"Abb. 1: Die künstlerische Abbildung zeigt, dass nach neuesten "Vereinheitlichten Modellen" für die verschiedenen Formen von Quasaraktivität bei einem gut gefütterten Schwarzen Loch ein großer Teil der in das Zentrum strömenden Materie das Schwarze Loch selbst nie erreicht, sondern letztendlich von dem starken Lichtdruck des Zentralobjekts in einer bipolaren, kegelförmigen Struktur wieder nach außen "geblasen" wird. Bei APM 08279+5255 sehen wir zufällig entlang der ausströmenden Gasmassen, die deshalb durch die zentrale Lichtquelle "geröngt" werden. "
"Grafik: Max-Planck-Institut für Astrophysik / Spruit"

Diese Eigenschaften machen APM 08279+5255 zu einem hervorragenden Laboratorium, um mittels Röntgenstrahlen die Bedingungen im frühen Universum und in unmittelbarer Nähe supermassereicher Schwarzer Löcher zu untersuchen.

Bei der Analyse des mit dem europäischen Satelliten XMM-Newton aufgefangenen Röntgenlichts fanden Günther Hasinger, Stefanie Komossa und Norbert Schartel heraus, dass die aus dem Zentrum des Quasars strömende Materie große Mengen Eisen enthält. Aus der "Delle" im Quasarspektrum (Abbildung 2) konnten die Forscher schließlich den Anteil dieses Elements im Quasarzentrum - und damit im frühen Universum - messen. Das Eisen scheint weit gehend "alleine auf weiter Flur" zu sein, das heißt: Andere chemische Elemente, wie zum Beispiel Sauerstoff, machen sich kaum bemerkbar. So ist das Eisen/Sauerstoff-Verhältnis etwa drei- bis fünfmal so hoch wie in unserem Sonnensystem.

"Abb. 2: Die "Delle" im Spektrum des Quasars APM 08279+5255 (XMM-Newton-Foto links) stammt von dem Element Eisen. Ähnlich wie Mediziner mittels Röntgenstrahlen unsere Knochen darstellen können, weil sie für Röntgenstrahlung undurchlässig sind und daher dunkel erscheinen, sind die ausströmenden Eisenwolken von APM 08279+5255 undurchlässig für die Röntgenstrahlen, die im Zentrum des Quasars entstehen: Bei der für Eisen charakteristischen "Absorptionsenergie’’ (Pfeil) fehlt ein Teil des Röntgenlichtes. "
"Foto und Grafik: ESA / Max-Planck-Institut für extraterrestrische Physik "









Jedes schwere Element, aus dem Planeten wie unsere Erde und auch wir selbst bestehen, wurde in früheren Jahrmilliarden in Sternen erzeugt. Dies gilt auch für das Eisen, das besonders in einem speziellen Typ von Supernova ("Typ I") produziert wird: Supernovae sind massereiche Sonnen, die am Ende ihres Lebens in gigantischen Explosionen die in ihrem Inneren erzeugten Elemente in den interstellaren Raum blasen. Ein Teil dieses "Sternenstaubs" wird zur Bildung neuer Sterne verbraucht, ein anderer von den Schwarzen Löchern in den Zentren der Galaxien aufgesogen. Da aber Sterne, die als Typ I-Supernova enden, sehr lange leben (ungefähr eine Milliarde Jahre), sind große Mengen an Eisen im frühen Universum äußerst bemerkenswert.

Die Eisenhäufigkeit ist deshalb so wichtig, weil sie eine Art "kosmische Uhr" darstellt: Seit dem Urknall vor rund 15 Milliarden Jahren werden sämtliche chemischen Elemente - außer den leichtesten wie Wasserstoff und Helium - im oben beschriebenen Prozess produziert. Beim Eisen dauert das eine geraume Zeit: Mindestens eine Milliarde Jahre mussten vergehen, um zum Beispiel die bei unserer Sonne gefundenen Verhältnisse zu "erbrüten". Um so erstaunlicher, dass ein so junges Objekt wie APM 08279+5255 bereits einen deutlich höheren Eisengehalt aufweist als unser wesentlich älteres Sonnensystem. Entweder gibt es eine effizientere Art, Eisen zu erzeugen - quasi eine Art kosmische "Eisenfabrik" -, oder das Universum ist bei einer Rotverschiebung von z = 4, wie sie der Quasar besitzt, bereits viel älter als bisher angenommen.

Was bedeutet dieses "z"? Das Licht, das die Astronomen von weit entfernten Objekten empfangen, war lange Zeit unterwegs. Daher ist ein Blick in große Entfernungen auch immer ein Blick in die Vergangenheit des Universums - Teleskope ähneln Zeitmaschinen. Der Vorstoß in die größten Distanzen ermöglicht einzigartige Einblicke in die Frühphase des Weltalls. Während der Zeit, in der das Licht einer fernen Galaxie den weiten Weg zur Erde durchläuft, expandiert der gesamte Raum - und damit wächst auch der Abstand zwischen Wellentälern und -bergen des Lichts. Diese "Dehnung" führt zu größeren Wellenlängen, also zu einer Rotverschiebung (z) des Lichts, und gilt als Maß für die Entfernung einer Galaxie oder eines Quasars und damit für deren Alter: Je höher der "z"-Wert eines Objekts, desto größer sein Abstand und desto geringer sein Alter. In der Entfernung des Quasars APM 08279+5255 (z = 3,91) hatte das Weltall gerade einmal etwa ein Zehntel seines jetzigen Alters von rund 15 Milliarden Jahren; das Quasarlicht stammt also aus der Kinderstube des Kosmos.

Die neuen Beobachtungen zeichnen ein extremes Bild für den Innenbereich von APM 08279+5255: Es muss ein wahres "Feuerwerk" an Supernovae im Zentrum des Quasars gegeben haben, um so viel Eisen zu erzeugen. Nicht nur das: Um die hohe Leuchtkraft von APM 08279+5255 und den hohen Materieausfluss aus dem Quasarzentrum aufrechtzuerhalten, müssen jährlich sehr viele Sonnenmassen an Sternenstaub verschluckt und zum Teil wieder hinausgeblasen werden (Abbildung 1).

Doch selbst eine besonders hohe Rate an Supernovae kann - wegen der langen Lebensdauer der Sterne, die als Supernova enden - nur schwer erklären, warum so früh in der Entwicklung des Universums so viel Eisen erzeugt wurde. Wahrscheinlich benötigen wir außerdem mehr Zeit, also ein größeres Alter des frühen Universums, und können auf diese Weise unabhängige Hinweise auf die Existenz der kürzlich entdeckten Kosmologischen Konstanten ableiten - einer mysteriösen "Dunklen Energie", die das Universum heute noch auseinander zu treiben scheint.

Die mithilfe von XMM-Newton an APM 08279+5255 gemachten Beobachtungen liefern wichtige neue Informationen für das Verständnis der Elementsynthese und die chemische Entwicklung des frühen Universums, für die neuen vereinheitlichten Modelle der Geometrie der bei verschiedenen Aktivitätsformen von Quasaren ausströmenden Materie und schließlich für die Messung von Parametern wie der Kosmologischen Konstante. Während heute mit XMM-Newton nur ganz wenige, besonders helle Einzelobjekte wie APM 08279+5255 studiert werden können, hoffen die Wissenschaftler mit XEUS, dem künftigen großen Röntgenobservatorium der ESA, routinemäßige "Röntgen-Reihen-Untersuchungen" an vielen schwächeren Objekten vorzunehmen und damit die hier aufgeworfenen Fragen zu beantworten.

Weitere Informationen erhalten Sie von:

Prof. Dr. Günther Hasinger
Max-Planck-Institut für extraterrestrische Physik
Giessenbachstraße
85748 Garching
Tel.: +49-89-30000-3402
Fax: +49-89-30000-3569
E-Mail: skomossa@mpe.mpg.de

Dr. Stefanie Komossa
Max-Planck-Institut für extraterrestrische Physik
Giessenbachstraße
85748 Garching
Tel.: +49-89-30000-3577
Fax: +49-89-30000-3569
E-Mail: skomossa@mpe.mpg.de

Dr. Norbert Schartel
Europäische Raumfahrtagentur
Tel.: +34-91-8131-184
Fax: +34-91-8131-139
E-Mail: nscharte@xmm.vilspa.esa.es

Dr. Bernd Wirsing | Presseinformation

Weitere Berichte zu: Eisen QUASAR Röntgenstrahl Sonnensystem XMM-Newton

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie