Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenspuk in Diamant

06.06.2008
Forschern des 3. Physikalischen Instituts der Universität Stuttgart ist es erstmals gelungen, die Gitterbausteine von Diamanten gezielt in verschränkte Quantenzustände zu bringen.

Die Ergebnisse legen nahe, dass Diamant ein Material ist, mit dem man einen Quantencomputer bauen kann, der bei Raumtemperatur funktioniert - was gegenwärtig mit keinem anderen Material möglich erscheint. Über die Untersuchungen berichtet die Zeitschrift Science in Ihrer Ausgabe vom 6. Juni.*)

Physiker beschreiben die Welt der Atome durch die Quantenmechanik. Es gehört zu den Eigenheiten dieser Quantenmechanik, dass sie es erlaubt, zwei Objekte miteinander zu verbinden, obwohl diese keine sichtbare Interaktion aufweisen. Einstein hat diese Wechselwirkung "spukhaft" genannt, da sie unabhängig von der Entfernung der Objekte gilt. Mittlerweile ist die Verschränkung von Quantenobjekten allerdings zweifelsfrei nachgewiesen worden. Spektakuläre Experimente wie beispielsweise die Teleportation (das Kopieren von Eigenschaften eines Quantenteilchens auf ein anderes) beruhen auf dieser Besonderheit der Natur.

Allerdings ist dieser Effekt in der Regel äußerst störungsanfällig. Deshalb müssen Physiker für extreme Bedingungen sorgen und zum Beispiel bei Temperaturen nahe dem absoluten Nullpunkt arbeiten, um verschränkte Quantenzustände zu beobachten. Nicht so in Diamant, wie Forscher der Universität Stuttgart nachweisen konnten. In ihren Experimenten haben die Wissenschaftler zunächst Stickstoff in farblosen Diamant hineingeschossen. Diese Verunreinigung färbt den Diamant leicht pink und lässt sich im Kristall durch seine Fluoreszenz nachweisen. Durch seine sprichwörtliche Härte schirmt das Diamantgitter das implantierte Stickstoffatom ab und erlaubt es, Quanteneffekte, wie beispielsweise die Verschränkung unter Umgebungsbedingungen zu beobachten.

... mehr zu:
»Atom »Diamant »Kohlenstoffatom

Den Stuttgarter Forschern gelang es dabei, die die aus Kohlenstoff-Atomen bestehenden Gitterbausteine des Diamanten gezielt in geeignete Quantenzustände zu bringen. Ein Prozent dieser Kohlenstoffatome trägt nämlich ein magnetisches Moment. Solche Kohlenstoffatome spüren eine Wechselwirkung mit einem implantierten Stickstoffatom in der Nähe. Diese Wechselwirkung nutzen die Wissenschaftler, um die Kohlenstoffatome gezielt adressieren zu können. In ihren Experimenten konnten sie diese Atome miteinander verschränken. Dies ist eine der wesentlichen Voraussetzungen für so genannte Quantencomputer, eine Technologie, die es erlauben soll, superschnelle Computer zu bauen.

*) Philipp Neumann, Norikazu Mizuochi, Florian Rempp, Philip Hemmer, Hideyuki Watanabe, Satoshi Yamasaki, Vincent Jacques, Torsten Gaebel, Fedor Jelezko, Jörg Wrachtrup: "Multipartite Entanglement Among Single Spins in Diamond" - SCIENCE, 6 June 2008, Vol. 320, Issue 5880, http://www.sciencemag.org

Weitere Informationen bei Prof. Jörg Wrachtrup, 3. Physikalisches Institut,
Tel. 0711/685-65278, e-mail: wrachtrup@physik.uni-stuttgart.de.

Ursula Zitzler | idw
Weitere Informationen:
http://www.sciencemag.org
http://www.uni-stuttgart.de/

Weitere Berichte zu: Atom Diamant Kohlenstoffatom

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie