Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Streifen statt Schichten: Miniaturisierung magnetischer Sensoren durch Ionentechnik

06.06.2008
Magnetische Sensoren und andere Anwendungen magnetischer Materialien sind vielleicht bald in noch kleineren Dimensionen als bisher möglich. Denn Dresdner Wissenschaftler konnten erstmalig einen bislang nur für ausgedehnte magnetische Schichtsysteme bekannten Effekt in einer magnetischen Mikrostruktur realisieren. Durch diese Entdeckung können magnetische Sensoren prinzipiell noch leistungsfähiger werden. Die Ergebnisse wurden kürzlich in der Fachzeitschrift "Advanced Materials" veröffentlicht.

Fortschreitende Miniaturisierung ist ein wichtiger Motor für technische Weiterentwicklungen. Das zeigt sich gut an Festplattenlaufwerken, die bei einer hohen Speicherdichte heute so schmal sind, dass sie in schlanke Laptops passen. Für Festplatten werden ferromagnetische Materialien, also Dauermagneten z. B. aus Kobalt-Legierungen, verwendet.

Sie liegen in mehrlagigen magnetischen Schichtsystemen vor, wobei die einzelnen Schichten oft nur wenige Atomlagen dick sind. Lassen sich solche Systeme noch weiter miniaturisieren und wenn ja, welche Eigenschaften zeigen diese? Mit dieser Frage beschäftigen sich Wissenschaftler vom Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden und vom Forschungszentrum Dresden-Rossendorf (FZD). Sie griffen die bekannte Tatsache auf, dass es nicht ausreicht, die Dicke der einzelnen Schichten zu reduzieren.

Eine vielversprechende Alternative ist es, die typischen Eigenschaften der unterschiedlichen Materialschichten in einer einzelnen Schicht zu kombinieren, wie es den Forschern jetzt gelang. Sie stellten eine hauchdünne gestreifte Schicht her, bei der die Grenzen zwischen den einzelnen Streifen den Grenzen zwischen den einzelnen Lagen eines Schichtsystems entsprechen.

... mehr zu:
»FZD »Sensor

Übliche Schichtsysteme sind aus einzelnen Lagen hartmagnetischer und weichmagnetischer Materialien aufgebaut. Beides ist für die Funktionsfähigkeit magnetischer Bauteile wichtig. Hartmagnetische Materialien besitzen eine stabile magnetische Ausrichtung, weichmagnetische Materialien dagegen ändern ihre Magnetisierungsrichtung durch Anlegen eines magnetischen Feldes leicht, d. h. sie lassen sich leicht ummagnetisieren. Dieser Effekt wird z. B. angewendet, wenn in magnetischen Bits gespeicherte Daten durch den Lesekopf der Festplatte ausgelesen werden. So haben ultradünne magnetische Schichtsysteme die Datenspeicherung revolutioniert. Zu verdanken ist das der Entdeckung des Riesenmagnetowiderstand-Effekts (engl. giant magnetoresistance effect, kurz GMR), wofür Peter Grünberg und Albert Fert im vergangenen Jahr den Nobelpreis für Physik erhielten. Ähnliche Schichtsysteme finden sich aber auch in Magnetsensoren, die man überall im Alltag - z. B. bei Drehreglern in Stereoanlagen - antrifft.

Um magnetische Bauteile weiter zu miniaturisieren, sind die Eigenschaften sowohl hartmagnetischer als auch weichmagnetischer Materialien wichtig. Die Dresdner Wissenschaftler haben nun erstmalig gezeigt, dass man Materialien unterschiedlicher magnetischer Härte auch in einer einzelnen Schicht - im Gegensatz zu den bisherigen mehrlagigen Schichtsystemen - durch den Beschuss mit Fremdatomen im Mikrometerbereich kombinieren kann. Diese Behandlung mit Fremdatomen macht das ursprünglich hartmagnetische Material magnetisch weicher. Von oben betrachtet ergibt die neue Struktur ein Streifenmuster, da beide Materialsysteme in seitlichem Kontakt stehen. Die Erkenntnis der Dresdner Wissenschaftler dabei: Auch in einer einzelnen magnetischen Schicht beeinflussen die Grenzen zwischen den Materialien - auch Domänenwände genannt - das Ummagnetisierungsverhalten. Die neue Technologie hat den Vorteil, dass die Domänenwände mittels optischer Mikroskopie sichtbar gemacht (Abb. 1) und das Ummagnetisierungsverhalten als Ganzes untersucht werden kann.

Die Forscher wollen nun mit der Strukturierung in den Nanometer-Bereich vordringen, um die physikalischen Effekte bei einer größtmöglichen Miniaturisierung zu untersuchen. Dr. Jürgen Fassbender, Physiker am FZD, erläutert: "Es ist zu erwarten, dass ab einer bestimmten Strukturgröße weitere völlig neue Effekte auftreten."

Veröffentlichung:
J. McCord, L. Schultz, J. Fassbender "Hybrid soft-magnetic lateral exchange spring films created by ion irradiation", in: Advanced Materials 11/2008 (DOI: 10.1002/adma.200700623).
Ansprechpartner im FZD:
Dr. Jürgen Fassbender
Institut für Ionenstrahlphysik und Materialforschung
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 3096
j.fassbender@fzd.de
Ansprechpartner im IFW:
Dr. Jeffrey McCord
Institut für Metallische Werkstoffe
IFW Dresden
Tel.: 0351 4659 - 204
j.mccord@ifw-dresden.de
Pressekontakt im FZD:
Dr. Christine Bohnet
Presse- und Öffentlichkeitsarbeit, Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Fax: 0351 260 - 2700
c.bohnet@fzd.de
Pressekontakt im IFW:
Dr. Carola Langer
Tel.: 0351 4659 - 234
c.langer@ifw-dresden.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www3.interscience.wiley.com/journal/119816544/issue
http://www.fzd.de/

Weitere Berichte zu: FZD Sensor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie