Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Streifen statt Schichten: Miniaturisierung magnetischer Sensoren durch Ionentechnik

06.06.2008
Magnetische Sensoren und andere Anwendungen magnetischer Materialien sind vielleicht bald in noch kleineren Dimensionen als bisher möglich. Denn Dresdner Wissenschaftler konnten erstmalig einen bislang nur für ausgedehnte magnetische Schichtsysteme bekannten Effekt in einer magnetischen Mikrostruktur realisieren. Durch diese Entdeckung können magnetische Sensoren prinzipiell noch leistungsfähiger werden. Die Ergebnisse wurden kürzlich in der Fachzeitschrift "Advanced Materials" veröffentlicht.

Fortschreitende Miniaturisierung ist ein wichtiger Motor für technische Weiterentwicklungen. Das zeigt sich gut an Festplattenlaufwerken, die bei einer hohen Speicherdichte heute so schmal sind, dass sie in schlanke Laptops passen. Für Festplatten werden ferromagnetische Materialien, also Dauermagneten z. B. aus Kobalt-Legierungen, verwendet.

Sie liegen in mehrlagigen magnetischen Schichtsystemen vor, wobei die einzelnen Schichten oft nur wenige Atomlagen dick sind. Lassen sich solche Systeme noch weiter miniaturisieren und wenn ja, welche Eigenschaften zeigen diese? Mit dieser Frage beschäftigen sich Wissenschaftler vom Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden und vom Forschungszentrum Dresden-Rossendorf (FZD). Sie griffen die bekannte Tatsache auf, dass es nicht ausreicht, die Dicke der einzelnen Schichten zu reduzieren.

Eine vielversprechende Alternative ist es, die typischen Eigenschaften der unterschiedlichen Materialschichten in einer einzelnen Schicht zu kombinieren, wie es den Forschern jetzt gelang. Sie stellten eine hauchdünne gestreifte Schicht her, bei der die Grenzen zwischen den einzelnen Streifen den Grenzen zwischen den einzelnen Lagen eines Schichtsystems entsprechen.

... mehr zu:
»FZD »Sensor

Übliche Schichtsysteme sind aus einzelnen Lagen hartmagnetischer und weichmagnetischer Materialien aufgebaut. Beides ist für die Funktionsfähigkeit magnetischer Bauteile wichtig. Hartmagnetische Materialien besitzen eine stabile magnetische Ausrichtung, weichmagnetische Materialien dagegen ändern ihre Magnetisierungsrichtung durch Anlegen eines magnetischen Feldes leicht, d. h. sie lassen sich leicht ummagnetisieren. Dieser Effekt wird z. B. angewendet, wenn in magnetischen Bits gespeicherte Daten durch den Lesekopf der Festplatte ausgelesen werden. So haben ultradünne magnetische Schichtsysteme die Datenspeicherung revolutioniert. Zu verdanken ist das der Entdeckung des Riesenmagnetowiderstand-Effekts (engl. giant magnetoresistance effect, kurz GMR), wofür Peter Grünberg und Albert Fert im vergangenen Jahr den Nobelpreis für Physik erhielten. Ähnliche Schichtsysteme finden sich aber auch in Magnetsensoren, die man überall im Alltag - z. B. bei Drehreglern in Stereoanlagen - antrifft.

Um magnetische Bauteile weiter zu miniaturisieren, sind die Eigenschaften sowohl hartmagnetischer als auch weichmagnetischer Materialien wichtig. Die Dresdner Wissenschaftler haben nun erstmalig gezeigt, dass man Materialien unterschiedlicher magnetischer Härte auch in einer einzelnen Schicht - im Gegensatz zu den bisherigen mehrlagigen Schichtsystemen - durch den Beschuss mit Fremdatomen im Mikrometerbereich kombinieren kann. Diese Behandlung mit Fremdatomen macht das ursprünglich hartmagnetische Material magnetisch weicher. Von oben betrachtet ergibt die neue Struktur ein Streifenmuster, da beide Materialsysteme in seitlichem Kontakt stehen. Die Erkenntnis der Dresdner Wissenschaftler dabei: Auch in einer einzelnen magnetischen Schicht beeinflussen die Grenzen zwischen den Materialien - auch Domänenwände genannt - das Ummagnetisierungsverhalten. Die neue Technologie hat den Vorteil, dass die Domänenwände mittels optischer Mikroskopie sichtbar gemacht (Abb. 1) und das Ummagnetisierungsverhalten als Ganzes untersucht werden kann.

Die Forscher wollen nun mit der Strukturierung in den Nanometer-Bereich vordringen, um die physikalischen Effekte bei einer größtmöglichen Miniaturisierung zu untersuchen. Dr. Jürgen Fassbender, Physiker am FZD, erläutert: "Es ist zu erwarten, dass ab einer bestimmten Strukturgröße weitere völlig neue Effekte auftreten."

Veröffentlichung:
J. McCord, L. Schultz, J. Fassbender "Hybrid soft-magnetic lateral exchange spring films created by ion irradiation", in: Advanced Materials 11/2008 (DOI: 10.1002/adma.200700623).
Ansprechpartner im FZD:
Dr. Jürgen Fassbender
Institut für Ionenstrahlphysik und Materialforschung
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 3096
j.fassbender@fzd.de
Ansprechpartner im IFW:
Dr. Jeffrey McCord
Institut für Metallische Werkstoffe
IFW Dresden
Tel.: 0351 4659 - 204
j.mccord@ifw-dresden.de
Pressekontakt im FZD:
Dr. Christine Bohnet
Presse- und Öffentlichkeitsarbeit, Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Fax: 0351 260 - 2700
c.bohnet@fzd.de
Pressekontakt im IFW:
Dr. Carola Langer
Tel.: 0351 4659 - 234
c.langer@ifw-dresden.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www3.interscience.wiley.com/journal/119816544/issue
http://www.fzd.de/

Weitere Berichte zu: FZD Sensor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment

25.09.2017 | Biowissenschaften Chemie

Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas

25.09.2017 | Physik Astronomie

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten