Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Individualismus aus Selbsterhaltungstrieb

06.06.2008
MPQ-Forscher decken strukturgebende Mechanismen in kalten molekularen Gasen auf.

Ultrakalte Quantengase aus stark korrelierten Teilchen sind wichtige Modelle für das Verständnis von Festkörpereigenschaften. Die Korrelationen zwischen Teilchen entstehen dabei gewöhnlich durch eine elastische Wechselwirkung der Teilchen untereinander. Forscher am Max-Planck-Institut für Quantenoptik aus der Abteilung Quantendynamik (Leitung: Prof. Gerhard Rempe) sowie der Abteilung Theorie (Leitung: Prof. Ignacio Cirac); unter Mitarbeit des spanischen Physikers J. García-Ripoll von der Universidad Complutense de Madrid; haben nun gezeigt, dass sich solche starken Korrelationen auch durch eine unelastische Wechselwirkung erzeugen lassen.


Kalte Moleküle (blau) werden in einem periodischen Potential festgehalten. Wird das Potential entfernt, so würden die Moleküle sich normalerweise frei bewegen. Liegt allerdings eine starke unelastische Wechselwirkung zwischen den Molekülen vor, so bleiben die Moleküle in ihrem Anfangszustand eingefroren. MPQ

Überdies unterdrücken diese Korrelationen die Verlustmechanismen, die normalerweise durch die unelastische Wechselwirkung entstehen würden (Science, 6. Juni 2008), indem sie die Teilchen voneinander ferngehalten: Moleküle, die sich in einem ellblechförmigen, optischen Gitter eigentlich in einer Richtung frei bewegen könnten, bleiben periodisch aufgereiht sitzen, um verlustbringenden Stößen zu entgehen. Das Experiment könnte den Weg weisen für das Arbeiten mit andersartigen Quantensystemen, in denen ebenfalls starke Korrelationen aufgrund unelastischer Wechselwirkungen erwartet werden dürfen.

Makroskopische Eigenschaften wie Magnetismus oder Hochtemperatursupraleitung sind das Resultat eines komplexen Zusammenspiels vieler Teilchen, die stark korreliert sind, das heißt sich in ihrem Verhalten gegenseitig stark beeinflussen. Dabei spielt eine entscheidende Rolle, ob es sich bei den Teilchen um Fermionen oder Bosonen handelt: Bosonen nehmen bei sehr tiefen Temperaturen am liebsten alle ein und denselben Zustand ein.

... mehr zu:
»Bosonen »Molekül

Im Extremfall bilden sie ein Bose-Einstein-Kondensat, in dem etwa 100 000 Teilchen zu einem Riesenatom verschmelzen und sich das einzelne Atom nicht mehr von den anderen in seinen Quanteneigenschaften unterscheidet. Fermionen in einem abgeschlossenen System müssen sich dagegen jeweils in mindestes einer Quantenzahl voneinander unterscheiden, wodurch sie zwangsläufig miteinander stark korreliert sind.

In dem hier beschriebenen Experiment jedoch legen eigentlich bosonische Moleküle genau das Verhalten von Fermionen an den Tag, und dieser Individualismus rettet sie vor gegenseitiger Zerstörung. Die Physiker beginnen mit der Erzeugung eines Bose-Einstein-Kondensates aus Rubidiumatomen (die zu den Bosonen zählen) und füllen dies in ein dreidimensionales "optisches Gitter". Das ist eine Art Kristall aus Licht, das durch Überlagerung von stehenden Lichtwellen aus allen drei Raumrichtungen erzeugt wird. Das resultierende Laserlichtfeld ähnelt in seiner Form einem Stapel von Eierkartons, in dessen einzelnen Mulden sich die Atome niederlassen. Jeder dieser Gitterplätze wird mit genau zwei Atomen belegt. Anschließend wird durch Anlegen eines Magnetfeldes eine so genannte Feshbach-Resonanz adressiert, wodurch sich die zuvor ungebundenen Atompaare in den Mulden zu fragilen Molekülen chemisch verbinden. Die Tiefe der Mulde ist hier zunächst so gewählt, dass die Moleküle in der Mulde gefangen sind und nicht auf Nachbarplätze abwandern können.

Was aber passiert, wenn das optische Gitter direkt im Anschluss daran so verändert wird, dass es die Form eines Stapels von Wellblechen annimmt? Eine solche Transformation der Gittergeometrie lässt sich anhand der eingestrahlten Laserleistung gezielt realisieren. Die Moleküle befinden sich nun perlenkettenförmig aufgereiht in einer Art Rinne und haben prinzipiell die Möglichkeit, sich entlang der Rinne zu bewegen. Intuitiv könnte man also erwarten, dass die Moleküle dann mit ihren Nachbarn zusammenstoßen und aufgrund ihrer fragilen Bauart dabei zerstört werden. Eine rapide Abnahme der Anzahl der Moleküle wäre die Folge.

Erstaunlicherweise zeigt sich jedoch im Experiment, dass sich die Teilchen nicht vom Fleck rühren und nicht miteinander kollidieren. Warum das so ist, erklärt Dominik Bauer, Doktorand am Experiment: "Eigentlich kann man sich die Moleküle wie fragile Seifenblasen vorstellen. Wenn sie sich entlang der Rinne zu nahe kämen und mit einem Nachbarn zusammenstießen, würden beide zerfallen. Da die Moleküle aber von der Quantenmechanik beherrscht werden, tun sie dies nicht. Stattdessen halten sie von vornherein Abstand voneinander. Obwohl sie Bosonen sind, zeigen sie somit ein Verhalten, dass man so eigentlich nur von Fermionen kennt. Im Fachjargon gesprochen: das molekulare, bosonische Gas ist fermionisiert."

Die Ergebnisse dieses Experiments zeigen Möglichkeiten auf, starke Korrelationen in Quantensystemen zu realisieren, die aufgrund der heftigen Wechselwirkung der Teilchen eigentlich unter hohen Verlusten leiden würden. In solchen Systemen sollten sich daher - so hofft man - Rahmenbedingungen schaffen lassen, die Verluste so weit reduzieren, dass Experimente innerhalb vernünftiger Zeitspannen durchzuführen sind. Aufgrund der allgemeinen Natur der im Experiment aufgedeckten Mechanismen könnten sich damit nicht nur für die Physik kalter Gase, sondern auch für ein viel breiteres Spektrum der Naturwissenschaften neue Perspektiven eröffnen. [O. M.]

Originalveröffentlichung:
N. Syassen, D. M. Bauer, M. Lettner, T. Volz, D. Dietze, J. J. Garcia-Ripoll, J. I. Cirac, G. Rempe, S. Dürr
"Strong Dissipation Inhibits Losses and induces Correlations in Cold Molecular Gases"

Science, 6. Juni 2008

Kontakt:

Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Prof. Dr. Ignacio Cirac
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 736
Fax: +49 - 89 / 32905 - 336
E-Mail: ignacio.cirac@mpq.mpg.de
Dipl. phys. Dominik Bauer
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 377
Fax: +49 - 89 / 32905 - 311
E-Mail: dominik.bauer@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Berichte zu: Bosonen Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen