Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Individualismus aus Selbsterhaltungstrieb

06.06.2008
MPQ-Forscher decken strukturgebende Mechanismen in kalten molekularen Gasen auf.

Ultrakalte Quantengase aus stark korrelierten Teilchen sind wichtige Modelle für das Verständnis von Festkörpereigenschaften. Die Korrelationen zwischen Teilchen entstehen dabei gewöhnlich durch eine elastische Wechselwirkung der Teilchen untereinander. Forscher am Max-Planck-Institut für Quantenoptik aus der Abteilung Quantendynamik (Leitung: Prof. Gerhard Rempe) sowie der Abteilung Theorie (Leitung: Prof. Ignacio Cirac); unter Mitarbeit des spanischen Physikers J. García-Ripoll von der Universidad Complutense de Madrid; haben nun gezeigt, dass sich solche starken Korrelationen auch durch eine unelastische Wechselwirkung erzeugen lassen.


Kalte Moleküle (blau) werden in einem periodischen Potential festgehalten. Wird das Potential entfernt, so würden die Moleküle sich normalerweise frei bewegen. Liegt allerdings eine starke unelastische Wechselwirkung zwischen den Molekülen vor, so bleiben die Moleküle in ihrem Anfangszustand eingefroren. MPQ

Überdies unterdrücken diese Korrelationen die Verlustmechanismen, die normalerweise durch die unelastische Wechselwirkung entstehen würden (Science, 6. Juni 2008), indem sie die Teilchen voneinander ferngehalten: Moleküle, die sich in einem ellblechförmigen, optischen Gitter eigentlich in einer Richtung frei bewegen könnten, bleiben periodisch aufgereiht sitzen, um verlustbringenden Stößen zu entgehen. Das Experiment könnte den Weg weisen für das Arbeiten mit andersartigen Quantensystemen, in denen ebenfalls starke Korrelationen aufgrund unelastischer Wechselwirkungen erwartet werden dürfen.

Makroskopische Eigenschaften wie Magnetismus oder Hochtemperatursupraleitung sind das Resultat eines komplexen Zusammenspiels vieler Teilchen, die stark korreliert sind, das heißt sich in ihrem Verhalten gegenseitig stark beeinflussen. Dabei spielt eine entscheidende Rolle, ob es sich bei den Teilchen um Fermionen oder Bosonen handelt: Bosonen nehmen bei sehr tiefen Temperaturen am liebsten alle ein und denselben Zustand ein.

... mehr zu:
»Bosonen »Molekül

Im Extremfall bilden sie ein Bose-Einstein-Kondensat, in dem etwa 100 000 Teilchen zu einem Riesenatom verschmelzen und sich das einzelne Atom nicht mehr von den anderen in seinen Quanteneigenschaften unterscheidet. Fermionen in einem abgeschlossenen System müssen sich dagegen jeweils in mindestes einer Quantenzahl voneinander unterscheiden, wodurch sie zwangsläufig miteinander stark korreliert sind.

In dem hier beschriebenen Experiment jedoch legen eigentlich bosonische Moleküle genau das Verhalten von Fermionen an den Tag, und dieser Individualismus rettet sie vor gegenseitiger Zerstörung. Die Physiker beginnen mit der Erzeugung eines Bose-Einstein-Kondensates aus Rubidiumatomen (die zu den Bosonen zählen) und füllen dies in ein dreidimensionales "optisches Gitter". Das ist eine Art Kristall aus Licht, das durch Überlagerung von stehenden Lichtwellen aus allen drei Raumrichtungen erzeugt wird. Das resultierende Laserlichtfeld ähnelt in seiner Form einem Stapel von Eierkartons, in dessen einzelnen Mulden sich die Atome niederlassen. Jeder dieser Gitterplätze wird mit genau zwei Atomen belegt. Anschließend wird durch Anlegen eines Magnetfeldes eine so genannte Feshbach-Resonanz adressiert, wodurch sich die zuvor ungebundenen Atompaare in den Mulden zu fragilen Molekülen chemisch verbinden. Die Tiefe der Mulde ist hier zunächst so gewählt, dass die Moleküle in der Mulde gefangen sind und nicht auf Nachbarplätze abwandern können.

Was aber passiert, wenn das optische Gitter direkt im Anschluss daran so verändert wird, dass es die Form eines Stapels von Wellblechen annimmt? Eine solche Transformation der Gittergeometrie lässt sich anhand der eingestrahlten Laserleistung gezielt realisieren. Die Moleküle befinden sich nun perlenkettenförmig aufgereiht in einer Art Rinne und haben prinzipiell die Möglichkeit, sich entlang der Rinne zu bewegen. Intuitiv könnte man also erwarten, dass die Moleküle dann mit ihren Nachbarn zusammenstoßen und aufgrund ihrer fragilen Bauart dabei zerstört werden. Eine rapide Abnahme der Anzahl der Moleküle wäre die Folge.

Erstaunlicherweise zeigt sich jedoch im Experiment, dass sich die Teilchen nicht vom Fleck rühren und nicht miteinander kollidieren. Warum das so ist, erklärt Dominik Bauer, Doktorand am Experiment: "Eigentlich kann man sich die Moleküle wie fragile Seifenblasen vorstellen. Wenn sie sich entlang der Rinne zu nahe kämen und mit einem Nachbarn zusammenstießen, würden beide zerfallen. Da die Moleküle aber von der Quantenmechanik beherrscht werden, tun sie dies nicht. Stattdessen halten sie von vornherein Abstand voneinander. Obwohl sie Bosonen sind, zeigen sie somit ein Verhalten, dass man so eigentlich nur von Fermionen kennt. Im Fachjargon gesprochen: das molekulare, bosonische Gas ist fermionisiert."

Die Ergebnisse dieses Experiments zeigen Möglichkeiten auf, starke Korrelationen in Quantensystemen zu realisieren, die aufgrund der heftigen Wechselwirkung der Teilchen eigentlich unter hohen Verlusten leiden würden. In solchen Systemen sollten sich daher - so hofft man - Rahmenbedingungen schaffen lassen, die Verluste so weit reduzieren, dass Experimente innerhalb vernünftiger Zeitspannen durchzuführen sind. Aufgrund der allgemeinen Natur der im Experiment aufgedeckten Mechanismen könnten sich damit nicht nur für die Physik kalter Gase, sondern auch für ein viel breiteres Spektrum der Naturwissenschaften neue Perspektiven eröffnen. [O. M.]

Originalveröffentlichung:
N. Syassen, D. M. Bauer, M. Lettner, T. Volz, D. Dietze, J. J. Garcia-Ripoll, J. I. Cirac, G. Rempe, S. Dürr
"Strong Dissipation Inhibits Losses and induces Correlations in Cold Molecular Gases"

Science, 6. Juni 2008

Kontakt:

Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Prof. Dr. Ignacio Cirac
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 736
Fax: +49 - 89 / 32905 - 336
E-Mail: ignacio.cirac@mpq.mpg.de
Dipl. phys. Dominik Bauer
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 377
Fax: +49 - 89 / 32905 - 311
E-Mail: dominik.bauer@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Berichte zu: Bosonen Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie