Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optik im Nanomaßstab - Auf dem Weg zum ultraschnellen Computer

27.05.2008
Die Realisierung von ultraschnellen Computern, bei denen die Information mittels Licht verarbeitet wird, scheiterte bis dato an einem durch die Natur des Lichts gegebenen Größenproblem: Die optischen Bauelemente sind noch zu groß, um in ausreichender Zahl auf einem Chip untergebracht zu werden.

Forscher der Ludwig-Maximilians-Universität (LMU) München am Lehrstuhl für Photonik und Optoelektronik von Professor Jochen Feldmann konnten nun aber in Zusammenarbeit mit der Firma Roche Diagnostics aus kleinsten Goldkügelchen ein optisches Bauelement entwickeln, das weniger als ein Zehntausendstel Millimeter groß ist. Das Licht wird hierbei zwischen die Kügelchen gequetscht.

Mit einem derartigen Nano-Resonator könnte jetzt ein Miniatur-Laser in derselben Größenordnung Wirklichkeit werden. "Solche für das Licht eigentlich zu kleinen Nano-Bauelemente sind eine wichtige Voraussetzung für Chip-basierte Computer, die mit Licht rechnen sollen", sagt Feldmann. Die jetzt in der Fachzeitschrift "Physical Review Letters" veröffentlichten Forschungsergebnisse entstanden im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich" (NIM).

Von Computern, die mit Licht statt mit elektrischem Strom funktionieren, träumen Wissenschaftler schon seit vielen Jahren. Der Vorteil liegt auf der Hand: Lichtstrahlen bestehen aus Photonen, also aus Teilchen ohne Ladung, die sich gegenseitig nicht beeinflussen. Überlagern sich etwa zwei Lichtstrahlen, dann kommt es nicht zu einer Störung der übertragenen Informationen. Dies wird bereits jetzt bei der Hochgeschwindigkeits-Datenübertragung in Glasfaserkabeln ausgenutzt, bei denen optische Signale unterschiedlicher Frequenzen gleichzeitig auf engstem Querschnitt verschiedene Daten übermitteln.

... mehr zu:
»Nanometer »Resonator

In herkömmlichen Computern dagegen werden negativ geladene Elektronen zur Informationsübertragung genutzt. Aber auch die Verarbeitung von Informationen könnte mit Licht deutlich schneller vonstatten gehen, denn optische Computer könnten große Mengen unterschiedlicher Daten nicht nur gleichzeitig übertragen, sondern auch viel schneller bearbeiten.

Ein grundlegendes Problem konnte bislang aber noch nicht gelöst werden. Die Erzeugung, der Transport und die Verarbeitung von Lichtwellen auf klassische Weise, etwa in einer Glasfaser, erfordern Strukturen, die mindestens so groß sind wie die halbe Wellenlänge des Lichtes selbst. Und die liegt für sichtbares Licht bei einigen hundert Nanometern. Zum Vergleich: Selbst die Leiterbahnen heutiger Computer-Schaltkreise sind zehnmal schmaler. Um eine vergleichbare Miniaturisierung bei Licht-Computern zu erreichen, sind also neuartige Konzepte gefragt. Ein zentraler Punkt ist dabei die Entwicklung von ultrakleinen optischen Bauelementen im Nanometer-Maßstab.

Ein wichtiger Schritt ist jetzt gelungen. Denn Feldmann und seine Forscherkollegen konnten erstmals das wichtigste Bauteil eines Lasers, den optischen Resonator, im Nanometer-Maßstab entwickeln. Dafür setzten sie in Zusammenarbeit mit der Firma Roche Diagnostics in Penzberg "biochemische" Tricks auf unkonventionelle Weise ein - und zwar mit Erfolg. In einem optischen Resonator wird Licht zwischen zwei Spiegeln hin- und her reflektiert, um eine Verstärkung zu erzielen. Dabei ist der Abstand der beiden Spiegel entscheidend. Er muss ein Vielfaches der halben Lichtwellenlänge betragen. Die Dimensionen des von den Münchner Wissenschaftlern entwickelten neuartigen Resonators sind aber viel kleiner. Er besteht aus kugelförmigen, etwa 40 Nanometer großen Gold-Partikeln, die im Abstand weniger Nanometer Paare bilden - so genannte Dimere - und mit Fluoreszenz-Farbstoffmolekülen verknüpft sind.

Das physikalische Prinzip dahinter: Bereits ein einzelnes Gold-Partikel lässt sich zu Schwingungen seiner Elektronen anregen. Bildet es aber mit einem weiteren Partikel ein Dimer, so treten durch die Kopplung der als "Plasmonen" bezeichneten Elektronen-Schwingungen zwei neuartige Phänomene auf: Zum einen kommt es im Zwischenraum der Partikel zu einer enormen Überhöhung der elektrischen Feldstärke und damit der Fluoreszenz-Intensität des Farbstoffmoleküls. Zum anderen lässt sich die Resonanzfrequenz durch den Abstand der Partikel über einen großen Frequenzbereich hinweg verändern. Damit gleicht das Nanopartikel-Dimer einem Hohlraumresonator, der bei herkömmlichen Lasern zum Einsatz kommt und durch den Abstand der Spiegel reguliert werden kann.

Über die Messung der Fluoreszenzstrahlung gelang den Münchner Wissenschaftlern der Nachweis dieses außergewöhnlichen Resonanzverhaltens der Gold-Dimere für Lichtwellenlängen zwischen 550 und 700 Nanometern, wobei der Partikel-Abstand zwischen 0,8 und 6,4 Nanometern variiert wurde. Eine Modellrechnung zur theoretischen Erklärung ihrer Ergebnisse haben die Forscher gleich mitgeliefert. Dabei ist vor allem die Physik der Farbstoffmoleküle entscheidend. Man muss berücksichtigen, dass die Energieniveaus der Elektronen mit den mechanischen Schwingungen der Moleküle verknüpft sind. Erst dann kann die resonante Verstärkung ganz bestimmter Emissionswellenlängen durch die Nano-Resonatoren korrekt erklärt werden.

Publikation:
"Shaping emission spectra of fluorescent molecules with single, plasmonic nanoresonators", M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, Physical Review Letters (23. Mai 2008)
Ansprechpartner:
Prof. Dr. Jochen Feldmann
Lehrstuhl für Photonik und Optoelektronik
Department für Physik und CeNS
Tel: 089 / 2180 - 3359
E-Mail: feldmann@lmu.de
Dr. Peter Sonntag
Nanosystems Initiative Munich
Tel.: 089 / 2180 - 5091
E-Mail: peter.sonntag@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.nano-initiative-munich.de

Weitere Berichte zu: Nanometer Resonator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics