Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einer der stärksten Laser Deutschlands in Betrieb gegangen

23.05.2008
In nur einem Jahr ist es der Arbeitsgruppe "Laser-Teilchenbeschleunigung" am Forschungszentrum Dresden-Rossendorf (FZD) gelungen, ein neues Hochintensitätslaser-Labor aufzubauen, das am gestrigen Donnerstag (22. Mai 2008) durch die sächsische Wissenschaftsministerin Dr. Eva-Maria Stange in Betrieb genommen wurde.

Der neue Laser kann Lichtpulse mit der enormen Leistung von 150 Terawatt (TW) erzeugen und ist damit einer der leistungsstärksten Ultrakurzpuls-Laser in Deutschland. Für einen winzigen Moment wird im Brennfleck des Laserstrahls eine Lichtintensität erreicht, welche derjenigen entspricht, die die Sonnenstrahlung durch ein Brennglas, das so groß ist wie die gesamte Erde, auf einer Bleistiftspitze bewirken würde.

Europaweit existieren in der Leistungsklasse des neuen Rossendorfer Lasers nur eine Handvoll vergleichbarer Systeme. Trotz der unvorstellbaren Pulsleistungen brauchen solche Laser nur wenig Platz - aufgrund ihrer ultrakurzen Pulse von einigen 10 Femtosekunden (100 Femtosekunden braucht Licht, um die Breite eines menschlichen Haares zu durchqueren) kommen sie bei 10 Pulsen pro Sekunde mit der mittleren Leistung einer Glühbirne aus. Im Puls ist das Licht jedoch so intensiv, dass es beim Auftreffen auf Materie deren Bausteine, die Atome und Elektronen, trennt. Die Gesetze, die normalerweise bei der Wechselwirkung von Licht und Materie gelten, ändern sich dramatisch: Elektronen werden auf mikroskopischen Strecken in Richtung des Laserpulses auf Energien beschleunigt, die sonst nur mit großen Beschleunigeranlagen erreicht werden können.

Das noch sehr junge Gebiet der Laser-Teilchenbeschleunigung hat also verglichen mit der klassischen Beschleunigertechnologie den Vorteil, extrem kompakte Teilchenbeschleuniger bauen zu können. Normalerweise sind die Beschleunigungsstrecken - wie z.B. beim Elektronenbeschleuniger ELBE am FZD - mehrere Meter lang. Bei der Laser-Teilchenbeschleunigung genügen einige Millimeter, um Beschleunigungsspannungen von mehreren 100 Millionen Volt zu erzeugen. Besonders die Medizin setzt große Hoffnungen in die neue Technologie und erwartet kompaktere und folglich preiswertere Anlagen zur Strahlentherapie bei Krebserkrankungen. Zu den weiteren möglichen Anwendungen ultrakurz gepulster Laser zählen z.B. auch moderne Lichtquellen im Röntgenbereich.

Erste Experimente zur Beschleunigung von Teilchen sind am FZD im Sommer dieses Jahres geplant. "In den nächsten Tagen wollen wir den nächsten Meilenstein auf dem Weg dahin erreichen und die Fokussierbarkeit des Laserstrahls auf eine winzige Fläche von einigen Mikrometern Durchmesser demonstrieren", sagt Dr. Ulrich Schramm, Leiter der Arbeitsgruppe Laser-Teilchenbeschleunigung. Dies ist eine Grundvoraussetzung für physikalische Anwendungen, da die Intensität des Laserstrahls umso größer ist, je kleiner die Fläche wird, auf die man ihn richtet. Da jeder Laserpuls nur sehr kurz ist, ähnelt der noch unfokussierte Laserstrahl bei einer Breite von ca. 10 cm mehr einem fliegenden hauchdünnen Blatt Papier.

Die FZD-Wissenschaftler wollen die Grundlagenforschung auf dem Gebiet der Laser-Teilchenbeschleunigung vorantreiben. Der neue Laser steht nur am Anfang der Entwicklung noch leistungsfähigerer Laser am FZD. Die anvisierten langfristigen Anwendungen z.B. im medizinischen Bereich im Auge, haben die Forscher das Ziel, die Beschleunigungsprozesse reproduzierbar zu beherrschen. "Mit unserem Laser befinden wir uns nicht nur in der höchsten Leistungsklasse in diesem Pulsbereich", sagt Dr. Schramm, "sondern verfügen vor allem über die ausgezeichnete Reinheit der Pulse, die nötig ist, um hauchdünne Folien zu beschießen, bevor diese verdampfen". Dazu werden hauchdünne, beispielsweise mit Kunststoff beschichtete Metallfolien verwendet. Um beispielsweise Protonen, also Wasserstoffkerne, zu beschleunigen, fokussieren die Wissenschaftler das Laserlicht auf eine solche Folie. Das Licht drückt Elektronen auf der Rückseite heraus. Da sich unterschiedliche Ladungen anziehen, entsteht so ein senkrechtes Kraftfeld, das die positiv geladenen Protonen beschleunigt.

Der neue Hochintensitäts-Laser befindet sich in der ELBE-Halle im FZD in unmittelbarer Nähe des Elektronenbeschleunigers ELBE. Durch die Kopplung beider Geräte können in einem weiteren Schritt einmalige Experimente zur Laserbeschleunigung von Elektronen durchgeführt werden. Davon versprechen sich die Forscher hochenergetische Elektronenpulse hoher Qualität, wie sie zum Treiben von kompakten und dennoch brillanten Röntgenquellen eingesetzt werden könnten.

Veröffentlichung:
Der Artikel "Heller wird's schneller" (Internetportal "Welt der Physik") von Prof. Roland Sauerbrey und Dr. Ulrich Schramm erklärt kurz und verständlich die Beschleunigung von Teilchen mittels Laser. http://www.weltderphysik.de/de/6057.php
Weitere Informationen:
Dr. Ulrich Schramm
Forschungszentrum Dresden-Rossendorf (FZD)
Arbeitsgruppe Laser-Teilchenbeschleunigung
Tel.: 0351 260 - 2471 / 2693
Email: u.schramm@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Email : c.bohnet@fzd.de
Information:
Das FZD leistet wesentliche Beiträge in der Grundlagen- und anwendungsorientierten Forschung auf folgenden Gebieten:
o Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?
o Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
o Wie schützt man Mensch und Umwelt vor technischen Risiken?
Das FZD engagiert sich für die Umsetzung der wissenschaftlichen Erkenntnisse im Hinblick auf die zukünftige Gestaltung von Wirtschaft und Gesellschaft. Es betreibt zu diesem Zweck 6 größere Forschungsanlagen, die auch externen Nutzern zur Verfügung stehen.

Das FZD ist mit ca. 700 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft http://www.wgl.de und verfügt über ein jährliches Budget von rund 57 Mill. Euro (Stand: 12/2006). Hinzu kommen etwa 10 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 83 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Ländern gemeinsam gefördert werden. Die Leibniz-Institute verfügen über ein Gesamtbudget von gut 1 Milliarde Euro und beschäftigen mehr als 13.000 Mitarbeiter.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.weltderphysik.de/de/6057.php
http://www.wgl.de
http://www.fzd.de/

Weitere Berichte zu: FZD Laser Laser-Teilchenbeschleunigung Laserstrahl

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie