Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnell und günstig zum photonischen Nano-Bauelement

09.05.2008
Festkörperphysiker der Universität Jena an bahnbrechender Neuentwicklung beteiligt / Internationales Forscherteam publiziert in der aktuellen Ausgabe der Fachzeitschrift "Nano Letters"

Sie sind so winzig, dass sie mit bloßem Auge nicht zu erkennen sind, doch im Verbund vermögen sie Erstaunliches: Sogenannte "Halbleiter-Nanodrähte" besitzen gerade einmal ein Tausendstel des Durchmessers eines menschlichen Haares und sind höchstens einen Millimeter lang.

Doch zusammengeschaltet in ebenso winzigen Schaltkreisen können sie zwischen einzelnen Elektronen Strom leiten und damit Licht emittieren. "Damit eignen sich derartige Arrays aus Nanodrähten hervorragend als Leucht- und Laserdioden", sagt der jüngst an die Friedrich-Schiller-Universität Jena berufene Festkörperphysiker Prof. Dr. Carsten Ronning.

Während sich die winzigen Halbleiter-Nanodrähte aus Zinkoxid heute mittels gängiger chemischer Verfahren leicht herstellen lassen, verhinderte die bislang äußerst aufwändige Herstellung von Nanodraht-basierten Bauelementen deren Einsatz in der Praxis. "Das wird sich jedoch bald ändern", ist Prof. Ronning überzeugt. Gemeinsam mit Kollegen der renommierten Harvard University und der Universitäten Göttingen und Bremen hat der Jenaer Physiker eine Methode entwickelt, solche Schaltkreise aus Nanodrähten in großer Zahl schnell und kostengünstig zusammenzubauen. Das zum Patent angemeldete Verfahren hat das deutsch-amerikanische Forscherteam jetzt in der aktuellen Ausgabe der Fachzeitschrift "Nano Letters" veröffentlicht.

... mehr zu:
»Nano »Nanodraht

Mit Hilfe der Photolithographie strukturieren die Physiker zunächst eine Siliziumfläche mit Kontakten und deponieren die Nanodrähte darauf. Anschließend werden diese einfach mit einer nicht-leitenden Glasschicht überschichtet, die ausgehärtet wird. "Wenn ein metallischer Kontakt darauf platziert wird, erhalten wir auf diese Weise eine Art Sandwich", erläutert Prof. Dr. Federico Capasso von der Harvard University. Zwischen der elektrisch leitenden Siliziumfläche am Boden und dem oberen metallischen Kontakt kann eine Spannung angelegt werden, so dass Strom nur durch die Nanodrähte fließt und zum Leuchten anregt.

Um zu zeigen, dass ihr Verfahren geeignet ist, Nanodraht-basierte Bauelemente im großen Maßstab herzustellen, produzierten die Forscher unter der Leitung von Mariano Zimmler (Harvard University) bereits mehrere Hundert solcher Arrays in einem einzigem Prozessdurchgang, die alle als Leuchtdioden funktionierten. "Je nach verwendetem Material der Nanodrähte senden die Dioden ultraviolettes, sichtbares oder infrarotes Licht aus", so Prof. Ronning.

Mit der Entwicklung dieser Technik kommt der Physiker der Universität Jena auch seinem Forschungsziel näher, Nanodrähte in Zukunft als Laser einzusetzen.

Originalpublikation:
Zimmler MA, Stichtenoth D, Ronning C, Yi W, Narayanamurti V, Voss T, Capasso F. Scalable Fabrication of Nanowire Photonic and Electronic Circuits Using Spin-on Glass. Nano Letters, Online Publication 8 May 2008.
Kontakt:
Prof. Dr. Carsten Ronning
Institut für Festkörperphysik der Friedrich-Schiller-Universität Jena
Helmholtzweg 5, 07743 Jena
Tel.: 03641 / 947300
E-Mail: carsten.ronning[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: Nano Nanodraht

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften