Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blitze ganz anders: Kalte Flammen heilen die Haut

09.05.2008
Ferdinand-Braun-Institut entwickelt eine neuartige Plasmaquelle, mit der sich Luft "anzünden" lässt und eine kalte Flamme entsteht. Damit sollen Hauterkrankungen behandelt und die Wundheilung verbessert werden.

Gleiches Prinzip, jedoch ungefährlich: Mikroplasmen und das Naturphänomen Blitz haben eines gemeinsam, beide sind physikalisch gesehen Plasmen bei atmosphärischem Druck.

Das bedeutet, dass sie in der normalen Umgebungsluft entstehen, also keinen Unter- oder Überdruck benötigen. Unter einem Plasma verstehen Physiker ein teilweise ionisiertes Gas, was auch als vierter Aggregatzustand bezeichnet wird. Im Gegensatz zu den hochenergetischen Naturgewalten eines Gewitters arbeitet die neuartige Plasmaquelle aus dem Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) jedoch nicht mit Millionen von Volt und Tausenden von Ampere, ihre "Flamme" fühlt sich sogar kalt an. Sie soll künftig im medizinischen Bereich helfen, Hauterkrankungen wie Schuppenflechte oder Neurodermitis zu behandeln und die Wundheilung zu verbessern. Ein Prototyp wurde im Rahmen des vom BMBF geförderten BioLip-Projektes entwickelt.

Neuere medizinische Erkenntnisse haben nämlich ergeben, dass der Heilungsprozess durch spezielle Gase wie Stickstoffmonoxid (NO) verbessert wird. Diese zerfallen jedoch an der Luft. Mit der Atmosphären-Plasmaquelle aus dem Ferdinand-Braun-Institut ist es dagegen möglich, NO aus den Basisgasen Stickstoff und Sauerstoff direkt in einer kleinen Plasmaflamme herzustellen - es wirkt also, bevor es zerfallen kann. Auch die Haut verbrennt nicht, da die Flamme des Mikrowellen-Plasmas kalt ist. Zudem ist es dem FBH gelungen, eine kleine und kompakte Plasmaquelle zu entwickeln, die ohne hohe Spannungen auskommt und dadurch sicher gehandhabt werden kann. Im Gegensatz zu anderen atmosphärischen Quellen wird das FBH-Gerät mit 24 Volt Niederspannung betrieben; es werden weder Leistungen im 1000-Watt-Bereich noch hohe Spannungen benötigt.

... mehr zu:
»FBH »Plasma »Plasmaquelle
Kompakte Plasmaquelle mit kalter Flamme
Der Prototyp der innovativen Plasmaquelle vereinigt verschiedene hochentwickelte Technologien. Ein integrierter Oszillator erzeugt ein Mikrowellensignal im 10-Watt-Bereich direkt in der Quelle und nutzt dazu einen ebenfalls am FBH entwickelten Hochleistungs-Galliumnitridtransistor. Dazu gibt der Oszillator sein Hochfrequenzsignal an eine resonante Struktur weiter, mit der die Teilchen beschleunigt werden und in der hohe elektrische Wechselfelder entstehen. Bei ausreichend großer Feldstärke ionisiert das Gas schlagartig und das Plasma entzündet sich. Die Mikrowellenfrequenz liegt bei 2,45 Gigahertz, dadurch brennt das Plasma homogen und stabil.

Mit dieser Atmosphären-Plasmaquelle können Gase bei normalem Luftdruck so angeregt werden, dass eine Flamme entsteht, die die Haut nicht verbrennt. Dazu werden ein oder mehrere Gase in geringen Mengen von etwa einem Liter pro Minute ionisiert, also elektrisch geladen. Die beschleunigten Elektronen stoßen mit Gasatomen zusammen und lösen weitere Elektronen heraus. Dadurch entsteht ein ionisierter Zustand, der dem eines sehr heißen Gases bzw. einer Flamme ähnelt. Allerdings werden nur die leichten Elektronen schnell und folglich "heiß", das eigentliche Gas bleibt kühl - man spricht auch von einem so genannten Nichtgleichgewichtsplasma.

Bitte wenden Sie sich bei Fragen an:

Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH), Dr. Horia-Eugen Porteanu, Tel. 030 - 6392-2677, porteanu@fbh-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Berichte zu: FBH Plasma Plasmaquelle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Neue Technik macht Mikro-3D-Drucker präziser
18.04.2018 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungsnachrichten

Aus dem Labor auf die Schiene: Forscher des HI-ERN planen Wasserstoffzüge mit LOHC-Technologie

19.04.2018 | Verkehr Logistik

Neuer Wirkmechanismus von Tumortherapeutikum entdeckt

19.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics