ETH-Forschung zu Halbleiterquantenstrukturen publiziert

Forscher der Quantum Photonics Group der ETH Zürich haben ein neues Halbleiter-System untersucht. Dazu „züchteten“ sie einen Galliumarsenid-Kristall. Auf diesen brachten sie zwei Schichten aus Indium-Galliumarsenid auf, aus denen sich winzige Inseln – die Quantenpunkte – bildeten.

Die Inseln der zweiten Schicht wuchsen direkt über denjenigen der ersten Schicht. „Ein solcher Punkt ist wie ein künstliches Atom aber grösser, und zwei übereinanderliegende Punkte stellen ein künstliches Molekül dar“, sagt Lucio Robledo, Erstautor der Studie, die in Science veröffentlicht wurde.

Das Forschungsteam unter der Leitung von Professor Ataç Imamoglu konnte in diesen Inseln einzelne Elektronen fangen. Jedes Elektron hat einen gewissen Spin, dreht sich also in einer Richtung um die eigene Achse und ist dadurch gewissermassen ein Quantenmagnet mit quantenmechanischen Eigenschaften. Vor einigen Jahren wurde vorgeschlagen, den Elektronenspin als Träger für Quanteninformationen zu nutzen.

Bei einem normalen Rechner sind die elementaren Informationen Bits, welche nur die Werte Null oder Eins haben. Quanten hingegen können beide Zustände gleichzeitig annehmen. Für das Elektron heisst das: es hat gleichzeitig zwei verschiedene Spinorientierungen. Die ETH-Forscher können den Spinzustand eines Elektrons mit hoher Zuverlässigkeit in eine bestimmte Richtung einstellen oder aber bei einem Elektron einen bestimmten Zustand auslesen, was in einer früheren Studie gezeigt wurde.

Um mit Quantensystemen rechnen zu können, muss man mehrere Quantenpunkte kontrolliert koppeln können. Die Forscher der Quantum Photonics Group arbeiten deshalb mit einem System aus zwei übereinanderliegenden Quantenpunkten. Die Inseln dienen nun nicht nur als Elektronenfalle, sie beeinflussen sich auch gegenseitig. Den ETH-Physikern ist es jetzt gelungen, die Zustände der gefangenen Elektronen von aussen her mit einem Laser zu kontrollieren. „Wir haben einen Weg gefunden, wie Quantenpunkte dazu gebracht werden können auf kontrollierte Art und Weise miteinander in eine Wechselwirkung zu treten und zu kommunizieren“, sagt Robledo.

Die Quantum Photonics Group erreichte mit den neuen Halbleiterquantenstrukturen einen wichtigen Fortschritt in der optischen Manipulation von gekoppelten Quantenpunkten. Trotz dieser beeindruckenden Erfolge zögert Professsor Ataç Imamoglu, die Quantenpunkte als den vielversprechendsten Weg zum Quantencomputer zu sehen, da noch eine Menge physikalische Probleme gelöst werden müssen. So fehlt beispielsweise noch ein detailliertes Verständnis der Wechselwirkungen zwischen den Quantenpunkten und ihrer Umgebung. Ausserdem müsste ein Quantencomputer tausende anstelle der zwei Quantenbits vereinen – für diese Herausforderung müsse bei Quantenpunkten erst noch eine Lösung gefunden werden.

Weitere Informationen:
Lucio Robledo
ETH Zürich
Quantum Photonics Group
Telefon +41 (0) 44 633 27 50
robledo@phys.ethz.ch
Originalbeitrag:
Robledo, L. et al. (2008): Conditional Dynamics of Interacting Quantum Dots, Science online, publiziert am 9.5.2008, DOI: 10.1126/science.1155374

Media Contact

Franziska Schmid idw

Weitere Informationen:

http://www.ethz.ch

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer