ETH-Forschung zu Halbleiterquantenstrukturen publiziert

Forscher der Quantum Photonics Group der ETH Zürich haben ein neues Halbleiter-System untersucht. Dazu „züchteten“ sie einen Galliumarsenid-Kristall. Auf diesen brachten sie zwei Schichten aus Indium-Galliumarsenid auf, aus denen sich winzige Inseln – die Quantenpunkte – bildeten.

Die Inseln der zweiten Schicht wuchsen direkt über denjenigen der ersten Schicht. „Ein solcher Punkt ist wie ein künstliches Atom aber grösser, und zwei übereinanderliegende Punkte stellen ein künstliches Molekül dar“, sagt Lucio Robledo, Erstautor der Studie, die in Science veröffentlicht wurde.

Das Forschungsteam unter der Leitung von Professor Ataç Imamoglu konnte in diesen Inseln einzelne Elektronen fangen. Jedes Elektron hat einen gewissen Spin, dreht sich also in einer Richtung um die eigene Achse und ist dadurch gewissermassen ein Quantenmagnet mit quantenmechanischen Eigenschaften. Vor einigen Jahren wurde vorgeschlagen, den Elektronenspin als Träger für Quanteninformationen zu nutzen.

Bei einem normalen Rechner sind die elementaren Informationen Bits, welche nur die Werte Null oder Eins haben. Quanten hingegen können beide Zustände gleichzeitig annehmen. Für das Elektron heisst das: es hat gleichzeitig zwei verschiedene Spinorientierungen. Die ETH-Forscher können den Spinzustand eines Elektrons mit hoher Zuverlässigkeit in eine bestimmte Richtung einstellen oder aber bei einem Elektron einen bestimmten Zustand auslesen, was in einer früheren Studie gezeigt wurde.

Um mit Quantensystemen rechnen zu können, muss man mehrere Quantenpunkte kontrolliert koppeln können. Die Forscher der Quantum Photonics Group arbeiten deshalb mit einem System aus zwei übereinanderliegenden Quantenpunkten. Die Inseln dienen nun nicht nur als Elektronenfalle, sie beeinflussen sich auch gegenseitig. Den ETH-Physikern ist es jetzt gelungen, die Zustände der gefangenen Elektronen von aussen her mit einem Laser zu kontrollieren. „Wir haben einen Weg gefunden, wie Quantenpunkte dazu gebracht werden können auf kontrollierte Art und Weise miteinander in eine Wechselwirkung zu treten und zu kommunizieren“, sagt Robledo.

Die Quantum Photonics Group erreichte mit den neuen Halbleiterquantenstrukturen einen wichtigen Fortschritt in der optischen Manipulation von gekoppelten Quantenpunkten. Trotz dieser beeindruckenden Erfolge zögert Professsor Ataç Imamoglu, die Quantenpunkte als den vielversprechendsten Weg zum Quantencomputer zu sehen, da noch eine Menge physikalische Probleme gelöst werden müssen. So fehlt beispielsweise noch ein detailliertes Verständnis der Wechselwirkungen zwischen den Quantenpunkten und ihrer Umgebung. Ausserdem müsste ein Quantencomputer tausende anstelle der zwei Quantenbits vereinen – für diese Herausforderung müsse bei Quantenpunkten erst noch eine Lösung gefunden werden.

Weitere Informationen:
Lucio Robledo
ETH Zürich
Quantum Photonics Group
Telefon +41 (0) 44 633 27 50
robledo@phys.ethz.ch
Originalbeitrag:
Robledo, L. et al. (2008): Conditional Dynamics of Interacting Quantum Dots, Science online, publiziert am 9.5.2008, DOI: 10.1126/science.1155374

Media Contact

Franziska Schmid idw

Weitere Informationen:

http://www.ethz.ch

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer