Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vermisstes Stück des kosmologischen Puzzles gefunden

07.05.2008
Astronomen entdecken einen Teil lange gesuchter baryonischer Materie in einem Filament zwischen zwei Galaxienhaufen

Die Zusammensetzung des Universums bereitet den Astrophysikern großes Kopfzerbrechen: Weit über 90 Prozent bestehen aus bisher unerforschten Stoffen – drei Viertel aus der geheimnisvollen Dunklen Energie, die das All auseinandertreibt, und etwa 21 Prozent aus Dunkler Materie, deren Bestandteile die Physiker bisher nicht ergründen konnten.


Bild: ESA/XMM-Newton/EPIC/ESO/SRON/MPE9
Eine Brücke aus heißem Gas verbindet zwei Galaxienhaufen. Kombination aus Röntgenbild und
optischem Bild von Abell 222 und Abell 223.

Ganze vier Prozent des Universums setzen sich aus der uns vertrauten Form der Materie zusammen, aus der auch wir selbst bestehen, der sogenannten baryonischen Materie. Selbst dieser geringe Anteil gibt allerdings Rätsel auf: Die bekannten Sterne, Galaxien und Gase im All machen zusammen nur die Hälfte dieser vier Prozent aus. Jetzt hat ein Team von Astrophysikern des Max-Planck-Instituts für extraterrestrische Physik (MPE) und der ESO in Garching bei München sowie zweier Institute in den Niederlanden Hinweise auf einen Teil der vermissten Baryonen in einem brückenartigen Filament zwischen zwei Galaxienhaufen gefunden (Astronomy & Astrophysics Letters, Mai 2008).

Das Universum ist wie ein überdimensionales Spinnennetz aufgebaut: Der Hauptteil der sichtbaren Materie ist entlang der faserartigen Strukturen der Dunklen Materie angeordnet. An seinen Fäden und Knoten hält dieses Gewebe riesige Brocken baryonischer Materie fest, die sich aus Quarks und Leptonen zusammensetzen.

... mehr zu:
»Astronom »Galaxienhaufen

Studien über den Urknall und die Fluktuationen der kosmischen Hintergrundstrahlung ergeben recht genaue Zahlen über das Vorhandensein von Baryonen im All. Aus den Berechnungen wussten die Astronomen also seit langem, dass sich die verschollenen Teile des kosmologischen Puzzles irgendwo verstecken müssen. Diese einzige direkt beobachtbare Komponente im All aufzuspüren und zu verstehen ist die Voraussetzung, um mehr über das Netz Dunkler Materie erfahren und die Qualität verschiedener kosmologischer Modelle überprüfen zu können.

Der fehlende Anteil der baryonischen Materie wird von den Forschern seit etwa neun Jahren in Form heißer, ultradünner Gasschleier besonders niedriger Dichte zwischen größeren Strukturen vermutet.

Wegen seiner hohen Temperatur ging man davon aus, dass dieses Gas vor allem im fernen Ultraviolett- und im Röntgenbereich strahlt. Die Wissenschaftler um Norbert Werner vom SRON Netherlands Institute for Space Research haben deshalb das Röntgen-Weltraumobservatorium XMMNewton benützt, um die beiden Galaxienhaufen Abell 222 und Abell 223 zu beobachten, die durch eine schmale Struktur miteinander verbunden sind. Die Wahl fiel auf dieses System wegen seiner besonders günstigen Geometrie: Man sieht die Materiebrücke schräg von vorn fast entlang der Sichtlinie. Dadurch verstärkt sich ihre sehr geringe Flächenhelligkeit durch die Projektion.

Das heiße, im Röntgenlicht sichtbare Gas, das die Wissenschaftler dort fanden, ist Teil der bisher vermissten baryonischen Materie. Die Eigenschaften des Gases, etwa Dichte und Temperatur, entsprechen im Wesentlichen dem, was Simulationen vorhergesagt hatten. „Gerade diesen wärmsten Teil der fehlenden Baryonen zu entdecken war wichtig, weil alle existierenden Modelle zwar die verschwundene Materie in irgendeiner Form heißen Gases vermuten, sich aber über die Extreme bisher nicht klar werden konnten“, erklärt Alexis Finoguenov, Astrophysiker am MPE. Es ist das erste Mal, dass Wissenschaftler die Brücke aus Gas zwischen zwei Galaxienhaufen im Röntgenlicht sehen können. „Bisher konnten wir nur die Cluster sehen, sozusagen die dichten Knoten des Netzes. Nun können wir erstmals auch die Verbindungsfäden des kosmischen Spinnennetzes studieren“, so MPE-Wissenschaftlerin Aurora Simionescu, Ko-Autorin der Publikation.

Die Entdeckung des Gases ist ein wichtiger Schritt auf dem Weg zu einem vollständigen Verständnis der Entwicklung des Kosmos. Die Verteilung und Zusammensetzung der baryonischen Materie gibt Aufschluss darüber, was genau nach dem Urknall ablief und welche Kräfte das Weltall heute und in Zukunft dominieren. Die Astronomen wollen nun in weiteren Weltraummissionen vergleichbare galaktische Systeme aufspüren. Langfristig wird es dazu notwendig sein, ein speziell für diesen Zweck optimiertes Weltraumobservatorium zu bauen, das den Kosmos mit weitaus höherer Empfindlichkeit durchsucht als die heutigen Satelliten.

Weitere Informationen erhalten Sie von:

Dr. Mona Clerico
Pressesprecherin
Max-Planck-Institut für Astrophysik und
Max-Planck-Institut für extraterrestrische Physik
Tel.: +49 89 30000-3980
E-Mail: clerico@mpe.mpg.de
Dr. Alexis Finoguenov
Max-Planck-Institut für extraterrestrische Physik
Tel. +49 89 30000-3644
E-Mail: alexis@mpe.mpg.de

Dr. Mona Clerico | Max-Planck-Institut
Weitere Informationen:
http://www.mpe.mpg.de

Weitere Berichte zu: Astronom Galaxienhaufen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise