Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwarzes Loch mit Gravitationsantrieb

30.04.2008
Forscher beobachten, wie ein Schwerkraftmonster aus einer Galaxie fliegt

Es klingt ein wenig wie Sciencefiction: Zwei schwarze Löcher im Herzen einer Galaxie verschmelzen miteinander und erzeugen Gravitationswellen, die das so entstandene superschwere schwarze Loch aus der Galaxie herauskatapultieren. Vor ein paar Jahren haben Theoretiker ein solch spektakuläres Szenario am Computer simuliert. Jetzt hat ein Team um Stefanie Komossa vom Max-Planck-Institut für extraterrestrische Physik (MPE) eine derartige "Gravitationsrakete" tatsächlich aufgespürt - mit weitreichenden Folgen für unser Verständnis der Galaxienentstehung und -entwicklung im frühen Universum (Astrophysical Journal Letters, 10. Mai 2008).


Geschoss aus dem Kern: Erstmals haben Forscher ein supermassives schwarzes Loch beobachtet, das - durch Gravitationswellen angetrieben - seine Muttergalaxie verlässt. Die Illustration zeigt dieses Szenario. Bild: MPE/HST-Archiv

Der Fund der Max-Planck-Wissenschaftler belegt erstmals eines dieser extremen Ereignisse, die bisher nur in Supercomputern simuliert wurden. Danach, so die Theorie, breiten sich beim Verschmelzen zweier schwarzer Löcher enorme Gravitationswellen mit Lichtgeschwindigkeit aus. Da die Wellen bevorzugt in eine Richtung ausgesandt werden, erhält das schwarze Loch selbst einen Rückstoß. Das ähnelt dem Vorgang beim Abschießen eines Gewehrs oder beim Start einer Rakete. Dadurch verharrt das schwarze Loch nicht länger im Kern des Milchstraßensystems, sondern beginnt zu wandern. Erreicht es eine bestimmte Geschwindigkeit, verlässt es schließlich seine Muttergalaxie.

Den Astrophysikern fiel das schwarze Loch im Sloan-Himmelsatlas durch seine sehr hohe Geschwindigkeit auf: Das Gas um das schwarze Loch zeigte im Spektrum stark verschobene Linien. Daraus schlossen die Forscher, dass sich das kosmische Schwergewicht - es enthält einige 100 Millionen Sonnenmassen - mit einem Tempo von knapp 3000 Kilometern pro Sekunde bewegt. Zum Vergleich: Würde man in München mit dieser Geschwindigkeit starten, hätte man innerhalb von weniger als einer Sekunde Afrika erreicht. Die ungeheure Stärke dieses Rückstoßes katapultierte das schwarze Loch aus seiner Muttergalaxie heraus.

... mehr zu:
»Galaxie »Gravitationswelle

Neben den Spektrallinien von Gas, das an das schwarze Loch gebunden ist, fielen auch ungewöhnlich schmale Linien aus der Galaxie selbst auf - sie stammen von Materie, die dort zurückgelassen wurde: Dieses Gas ist nicht an das schwarze Loch gekoppelt, wird aber von dessen Akkretionsscheibe beleuchtet, also von dem Strudel um diese Gravitationsfalle.

Wird ein schwarzes Loch aus dem Kern einer Galaxie gestoßen, nimmt es die direkt umgebende Materie bis auf einen geringen Rest mit und findet damit noch für viele Millionen Jahre "Nahrung". Es saugt weiterhin Gas aus der Scheibe auf, und dieses Gas leuchtet im Röntgenlicht. Tatsächlich hat das Team um Stefanie Komossa auch den Röntgenschein um das zehn Milliarden Lichtjahre entfernte schwarze Loch entdeckt: Die Himmelsregion wurde zufällig durch den Satelliten ROSAT erfasst; ganz am Rand des Gesichtsfelds lag eine Röntgenquelle, deren Position mit jener der fernen Galaxie übereinstimmt.

Gekräuselte Raumzeit

Astrophysiker interessieren sich stark für Gravitationswellen und ihre Effekte. Denn diese von Albert Einstein vorausgesagten Wellen zählen zu den energiereichsten Prozessen im Universum. Sie kräuseln die Struktur der Raumzeit wie ein in den See geworfener Stein die Wasseroberfläche. Im Jahr 2006 verschmolzen die Forscher erstmals in Computersimulationen schwarze Löcher und berechneten die dabei entstehenden Gravitationswellen-Signale.

Ein Jahr später gelang ein weiterer Durchbruch: Supercomputer wiesen die ungeheure Stärke des Rückstoßes beim Verschmelzen zweier schwarzer Löcher nach. Die Ergebnisse des Teams um Komossa bedeuten nun einen weiteren Meilenstein der Gravitationswellen-Forschung, da sie den bisher nur simulierten "Raketeneffekt der Gravitation" durch reale Beobachtungen bestätigen.

Zudem beweist die jüngste Entdeckung indirekt, dass schwarze Löcher tatsächlich miteinander verschmelzen. Auch für diesen theoretisch postulierten Prozess gab es bisher keine eindeutigen Belege. Aus der Beobachtung folgt außerdem, dass es Galaxien ohne schwarze Löcher in den Kernen geben muss - und auf der anderen Seite intergalaktische schwarze Löcher existieren, die auf alle Ewigkeit im Raum zwischen den Galaxien treiben.

Das wirft neue Fragen für die Forschung auf: Bildeten und formierten sich Galaxien und schwarze Löcher in der Frühphase des Universums gemeinsam? Oder gab es eine Population von Galaxien, die ihrer schwarzen Löcher im Kern beraubt wurden? Wie entwickelten sich diese Galaxien dann weiter?

In engem Wechselspiel zwischen Theorie und Beobachtung wollen die Astrophysiker jetzt diese Fragen klären. Unter anderem sollen verschiedene Detektoren auf dem Erdboden und im Weltraum, darunter das derzeit im Bau befindliche Weltraum-Interferometer LISA, in naher Zukunft auf die Fährte der Gravitationswellen angesetzt werden. Für diese weitergehenden Untersuchungen sind die Erkenntnisse des Max-Planck-Teams wichtig.

Originalveröffentlichung:

Komossa, S., Zhou, H., Lu, H.
A recoiling supermassive black hole in the quasar SDSSJ092712.65+294344.0?
Astrophysical Journal Letters, , Vol. 678, L81, 2008 (erscheint am 10. Mai 2008)

Dr. Bernd Wirsing | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Galaxie Gravitationswelle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie